Paper ID | SPE-8.5 |
Paper Title |
UNIT SELECTION SYNTHESIS BASED DATA AUGMENTATION FOR FIXED PHRASE SPEAKER VERIFICATION |
Authors |
Houjun Huang, Xu Xiang, Fei Zhao, AISpeech Ltd, Suzhou, China; Shuai Wang, Yanmin Qian, Shanghai Jiao Tong University, China |
Session | SPE-8: Speaker Recognition 2: Channel and Domain Robustness |
Location | Gather.Town |
Session Time: | Tuesday, 08 June, 14:00 - 14:45 |
Presentation Time: | Tuesday, 08 June, 14:00 - 14:45 |
Presentation |
Poster
|
Topic |
Speech Processing: [SPE-SPKR] Speaker Recognition and Characterization |
IEEE Xplore Open Preview |
Click here to view in IEEE Xplore |
Virtual Presentation |
Click here to watch in the Virtual Conference |
Abstract |
Data augmentation is commonly used to help build a robust speaker verification system, especially in limited-resource case. However, conventional data augmentation methods usually focus on the diversity of acoustic environment, leaving the lexicon variation neglected. For text dependent speaker verification tasks, it's well-known that preparing training data with the target transcript is the most effectual approach to build a well-performing system, however collecting such data is time-consuming and expensive. In this work, we propose a unit selection synthesis based data augmentation method to leverage the abundant text-independent data resources. In this approach text-independent speeches of each speaker are firstly broke up to speech segments given to their phonetic content. Then segments that contain phonetics in the target transcript are selected to produce a speech with the target transcript by concatenating them in turn. Experiments are carried out on the AISHELL Speaker Verification Challenge 2019 database, the results and analysis shows that our proposed method can boost the system performance significantly. |