Paper ID | SPCOM-8.5 |
Paper Title |
Real-Time Radio Modulation Classification with an LSTM Auto-Encoder |
Authors |
Ziqi Ke, Haris Vikalo, University of Texas at Austin, United States |
Session | SPCOM-8: Deep learning for communications |
Location | Gather.Town |
Session Time: | Friday, 11 June, 14:00 - 14:45 |
Presentation Time: | Friday, 11 June, 14:00 - 14:45 |
Presentation |
Poster
|
Topic |
Signal Processing for Communications and Networking: [SPC-ML] Machine Learning for Communications |
IEEE Xplore Open Preview |
Click here to view in IEEE Xplore |
Virtual Presentation |
Click here to watch in the Virtual Conference |
Abstract |
Identifying modulation type of a received radio signal is a challenging problem encountered in many applications including radio interference mitigation and spectrum allocation. This problem is rendered challenging by the existence of a large number of modulation schemes and numerous sources of interference. Existing methods for monitoring spectrum readily collect large amounts of radio signals. However, existing state-of-the-art approaches to modulation classification struggle to reach desired levels of accuracy with computational efficiency practically feasible for implementation on low-cost computational platforms. To this end, we propose a learning framework based on an LSTM denoising auto-encoder designed to extract robust and stable features from the noisy received signals, and detect the underlying modulation scheme. The method uses a compact architecture that may be implemented on low-cost computational devices while achieving or exceeding state-of-the-art classification accuracy. Experimental results on realistic synthetic and over-the-air radio data show that the proposed framework reliably and efficiently classifies radio signals, and often significantly outperform state-of-the-art approaches. |