2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDSPTM-6.5
Paper Title MSR-GAN: Multi-Segment Reconstruction via Adversarial Learning
Authors Mona Zehni, Zhizhen Zhao, University of Illinois at Urbana-Champaign, United States
SessionSPTM-6: Sampling, Multirate Signal Processing and Digital Signal Processing 2
LocationGather.Town
Session Time:Tuesday, 08 June, 16:30 - 17:15
Presentation Time:Tuesday, 08 June, 16:30 - 17:15
Presentation Poster
Topic Signal Processing Theory and Methods: [SMDSP] Sampling, Multirate Signal Processing and Digital Signal Processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Multi-segment reconstruction (MSR) is the problem of estimating a signal given noisy partial observations. Here each observation corresponds to a randomly located segment of the signal. While previous works address this problem using template or moment-matching, in this paper we address MSR from an unsupervised adversarial learning standpoint, named MSR-GAN. We formulate MSR as a distribution matching problem where the goal is to recover the signal and the probability distribution of the segments such that the distribution of the generated measurements following a known forward model is close to the real observations. This is achieved once a min-max optimization involving a generator-discriminator pair is solved. MSR-GAN is mainly inspired by CryoGAN [1]. However, in MSR-GAN we no longer assume the probability distribution of the latent variables, i.e. segment locations, is given and seek to recover it alongside the unknown signal. For this purpose, we show that the loss at the generator side originally is non-differentiable with respect to the segment distribution. Thus, we propose to approximate it using Gumbel-Softmax reparametrization trick. Our proposed solution is generalizable to a wide range of inverse problems. Our simulation results and comparison with various baselines verify the potential of our approach in different settings.