2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDIVMSP-5.1
Paper Title HOCA: HIGHER-ORDER CHANNEL ATTENTION FOR SINGLE IMAGE SUPER-RESOLUTION
Authors Yalei Lv, Tao Dai, Bin Chen, Tsinghua University, China; Jian Lu, Shenzhen University, China; Shu-Tao Xia, Tsinghua University, China; Jingchao Cao, City University of Hong Kong, China
SessionIVMSP-5: Super-resolution 1
LocationGather.Town
Session Time:Tuesday, 08 June, 16:30 - 17:15
Presentation Time:Tuesday, 08 June, 16:30 - 17:15
Presentation Poster
Topic Image, Video, and Multidimensional Signal Processing: [IVTEC] Image & Video Processing Techniques
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Convolutional neural networks (CNNs) have obtained great success in single image super-resolution (SR). More recent works (e.g., RCAN and SAN) have obtained remarkable performance with channel attention based on first- or second-order statistics of features. However, these methods neglect the rich feature statistics higher than second-order, thus hindering the representation ability of CNNs. To address this issue, we propose a higher-order channel attention (HOCA) module to enhance the representation ability of CNNs. In our HOCA module, to capture different types of semantic information, we first compute k-order of feature statistics, followed by channel attention to learn the feature interdependencies. Considering the diversity of input contents, we design a gate mechanism to adaptively select a specific k-order channel attention. Besides, our HOCA module serves as a plug-and-play module and can be easily plugged into existing state-of-art CNN-based SR methods. Extensive experiments on public benchmarks show that our HOCA module effectively improves the performance of various CNN-based SR methods.