Paper ID | SPE-19.2 |
Paper Title |
GRAPH ATTENTION NETWORKS FOR SPEAKER VERIFICATION |
Authors |
Jee-weon Jung, University of Seoul, South Korea; Hee-Soo Heo, Naver Corporation, South Korea; Ha-Jin Yu, University of Seoul, South Korea; Joon Son Chung, Naver Corporation, South Korea |
Session | SPE-19: Speaker Recognition 3: Attention and Adversarial |
Location | Gather.Town |
Session Time: | Wednesday, 09 June, 14:00 - 14:45 |
Presentation Time: | Wednesday, 09 June, 14:00 - 14:45 |
Presentation |
Poster
|
Topic |
Speech Processing: [SPE-SPKR] Speaker Recognition and Characterization |
IEEE Xplore Open Preview |
Click here to view in IEEE Xplore |
Virtual Presentation |
Click here to watch in the Virtual Conference |
Abstract |
This work presents a novel back-end framework for speaker verification using graph attention networks. Segment-wise speaker embeddings extracted from multiple crops within an utterance are interpreted as node representations of a graph. The proposed framework inputs segment-wise speaker embeddings from an enrollment and a test utterance and directly outputs a similarity score. We first construct a graph using segment-wise speaker embeddings and then input these to graph attention networks. After a few graph attention layers with residual connections, each node is projected into a one-dimensional space using affine transform, followed by a readout operation resulting in a scalar similarity score. To enable successful adaptation for speaker verification, we propose techniques such as separating trainable weights for attention map calculations between segment-wise speaker embeddings from different utterances. The effectiveness of the proposed framework is validated using three different speaker embedding extractors trained with different architectures and objective functions. Experimental results demonstrate consistent improvement over various baseline back-end classifiers, with an average equal error rate improvement of 20% over the cosine similarity back-end without test time augmentation. |