2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDSPE-38.4
Paper Title AN ITERATIVE FRAMEWORK FOR SELF-SUPERVISED DEEP SPEAKER REPRESENTATION LEARNING
Authors Danwei Cai, Weiqing Wang, Duke University, United States; Ming Li, Duke Kunshan University, China
SessionSPE-38: Speaker Recognition 6: Self-supervised and Unsupervised Learning
LocationGather.Town
Session Time:Thursday, 10 June, 14:00 - 14:45
Presentation Time:Thursday, 10 June, 14:00 - 14:45
Presentation Poster
Topic Speech Processing: [SPE-SPKR] Speaker Recognition and Characterization
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract In this paper, we propose an iterative framework for self-supervised speaker representation learning based on a deep neural network (DNN). The framework starts with training a self-supervision speaker embedding network by maximizing agreement between different segments within an utterance via a contrastive loss. Taking advantage of DNN's ability to learn from data with label noise, we propose to cluster the speaker embedding obtained from the previous speaker network and use the subsequent class assignments as pseudo labels to train a new DNN. Moreover, we iteratively train the speaker network with pseudo labels generated from the previous step to bootstrap the discriminative power of a DNN. Speaker verification experiments are conducted on the VoxCeleb dataset. The results show that our proposed iterative self-supervised learning framework outperformed previous works using self-supervision. The speaker network after 5 iterations obtains a 61% performance gain over the speaker embedding model trained with contrastive loss.