2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDASPS-7.2
Paper Title MAKF-SR: Multi-Agent Adaptive Kalman Filtering-based Successor Representations
Authors Mohammad Salimibeni, Concordia University, Canada; Parvin Malekzadeh, University of Toronto, Canada; Arash Mohammadi, Concordia University, Canada; Petros Spachos, University of Guelph, Canada; Konstantinos N. Plataniotis, University of Toronto, Canada
SessionASPS-7: Data Science & Machine Learning
LocationGather.Town
Session Time:Thursday, 10 June, 16:30 - 17:15
Presentation Time:Thursday, 10 June, 16:30 - 17:15
Presentation Poster
Topic Applied Signal Processing Systems: Signal Processing over IoT [OTH-IoT]
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract The paper is motivated by the importance of the Smart Cities (SC) concept for future management of global urbanization and energy consumption. Multi-agent Reinforcement Learning (RL) is an efficient solution to utilize large amount of sensory data provided by the Internet of Things (IoT) infrastructure of the SCs for city-wide decision making and managing demand response. Conventional Model-Free (MF) and Model-Based (MB) RL algorithms, however, use a fixed reward model to learn the value function rendering their application challenging for ever changing SC environments. Successor Representations (SR)-based techniques are attractive alternatives that address this issue by learning the expected discounted future state occupancy, referred to as the SR, and the immediate reward of each state. SR-based approaches are, however, mainly developed for single agent scenarios and have not yet been extended to multi-agent settings. The paper addresses this gap and proposes the Multi-Agent Adaptive Kalman Filtering-based Successor Representation (MAKF-SR) framework. The proposed framework can adapt quickly to the changes in a multi-agent environment faster than the MF methods and with the lower computational cost compared to MB algorithms. The proposed MAKF-SR is evaluated through a comprehensive set of experiments illustrating superior performance compared to its counterparts.