2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDSPE-53.4
Paper Title MULTI-SCALE SPEAKER DIARIZATION WITH NEURAL AFFINITY SCORE FUSION
Authors Taejin Park, Manoj Kumar, Shrikanth Narayanan, University of Southern California, United States
SessionSPE-53: Speaker Diarization
LocationGather.Town
Session Time:Friday, 11 June, 13:00 - 13:45
Presentation Time:Friday, 11 June, 13:00 - 13:45
Presentation Poster
Topic Speech Processing: [SPE-SPKR] Speaker Recognition and Characterization
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Predicting the speaker's identity of short speech segments in human dialogue has been considered one of the most challenging problems in speech signal processing. Speaker representations of short speech segments tend to be unreliable, resulting in poor fidelity of speaker representations in tasks requiring speaker recognition. In this paper, we propose an unconventional method that tackles the trade-off between temporal resolution and the quality of the speaker representations. To find a set of weights that balance the scores from multiple temporal scales of segments, a neural affinity score fusion model is presented. Using the CALLHOME dataset, we show that our proposed multi-scale segmentation and integration approach can achieve a state-of-the-art diarization performance.