Paper ID | SPTM-10.4 |
Paper Title |
ONLINE LEARNING OF TIME-VARYING SIGNALS AND GRAPHS |
Authors |
Stefania Sardellitti, Sergio Barbarossa, Paolo Di Lorenzo, Sapienza University of Rome, Italy |
Session | SPTM-10: Distributed Learning over Graphs |
Location | Gather.Town |
Session Time: | Wednesday, 09 June, 14:00 - 14:45 |
Presentation Time: | Wednesday, 09 June, 14:00 - 14:45 |
Presentation |
Poster
|
Topic |
Signal Processing Theory and Methods: [SIPG] Signal and Information Processing over Graphs |
IEEE Xplore Open Preview |
Click here to view in IEEE Xplore |
Virtual Presentation |
Click here to watch in the Virtual Conference |
Abstract |
The aim of this paper is to propose a method for online learning of time-varying graphs from noisy observations of smooth graph signals collected over the vertices. Starting from an initial graph, and assuming that the topology can undergo the perturbation of a small percentage of edges over time, the method is able to track the graph evolution by exploiting a small perturbation analysis of the Laplacian matrix eigendecomposition, while assuming that the graph signal is bandlimited. The proposed method alternates between estimating the time-varying graph signal and recovering the dynamic graph topology. Numerical results corroborate the effectiveness of the proposed learning strategy in the joint online recovery of graph signal and topology. |