2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDSS-8.2
Paper Title LEARNED DECIMATION FOR NEURAL BELIEF PROPAGATION DECODERS
Authors Andreas Buchberger, Christian Häger, Chalmers University of Technology, Sweden; Henry D. Pfister, Duke University, United States; Laurent Schmalen, Karlsruhe Institute of Technology, Germany; Alexandre Graell i Amat, Chalmers University of Technology, Sweden
SessionSS-8: Near-ML Decoding of Error-correcting Codes: Algorithms and Implementation
LocationGather.Town
Session Time:Wednesday, 09 June, 16:30 - 17:15
Presentation Time:Wednesday, 09 June, 16:30 - 17:15
Presentation Poster
Topic Special Sessions: Near-ML Decoding of Error-correcting Codes: Algorithms and Implementation
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract We introduce a two-stage decimation process to improve the performance of neural belief propagation (NBP), recently introduced by Nachmani et al., for short low-density parity-check (LDPC) codes. In the first stage, we build a list by iterating between a conventional NBP decoder and guessing the least reliable bit. The second stage iterates between a conventional NBP decoder and learned decimation, where we use a neural network to decide the decimation value for each bit. For a (128,64) LDPC code, the proposed NBP with decimation outperforms NBP decoding by 0.75 dB and performs within 1 dB from maximum-likelihood decoding at a block error rate of 10^(-4).