2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDHLT-18.2
Paper Title A Large-Scale Chinese Long-text Extractive Summarization Corpus
Authors Kai Chen, Guanyu Fu, Qingcai Chen, Baotian Hu, Harbin Institute of Technology, Shenzhen, China
SessionHLT-18: Language Understanding 6: Summarization and Comprehension
LocationGather.Town
Session Time:Friday, 11 June, 13:00 - 13:45
Presentation Time:Friday, 11 June, 13:00 - 13:45
Presentation Poster
Topic Human Language Technology: [HLT-LRES] Language Resources and Systems
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Recently, large-scale datasets have vastly facilitated the development in nearly domains of Natural Language Processing. However, lacking large scale Chinese corpus is still a critical bottleneck for further research on deep text summarization methods. In this paper, we publish a large-scale Chinese Long-text Extractive Summarization corpus named CLES. The CLES contains about 104K pairs, which is originally collected from Sina Weibo. To verify the quality of the corpus, we also manually tagged the relevance score of 5,000 pairs. Our benchmark models on the proposed corpus include conventional deep learning based extractive models and several pre-trained Bert-based algorithms. Their performances are reported and briefly analyzed to facilitate further research on the corpus. We will release this corpus for further research.