2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDSPTM-21.6
Paper Title A GLOBAL CAYLEY PARAMETRIZATION OF STIEFEL MANIFOLD\\FOR DIRECT UTILIZATION OF OPTIMIZATION MECHANISMS OVER VECTOR SPACES
Authors Keita Kume, Isao Yamada, Tokyo Institute of Technology, Japan
SessionSPTM-21: Optimization Methods for Signal Processing
LocationGather.Town
Session Time:Friday, 11 June, 13:00 - 13:45
Presentation Time:Friday, 11 June, 13:00 - 13:45
Presentation Poster
Topic Signal Processing Theory and Methods: [OPT] Optimization Methods for Signal Processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Optimization problem with orthogonality constraints, whose feasible region is called the Stiefel manifold, has rich applications in data sciences. The severe non-linearity of the Stiefel manifold has hindered the utilization of optimization mechanisms developed specially over a vector space for the problem. In this paper, we present a global parametrization of the Stiefel manifold entirely by a single fixed vector space with the Cayley transform, say Global Cayley Parametrization (G-CP), to solve the problem through optimization over a vector space. The G-CP has key properties for solving the problem with G-CP and for applications to orthogonality constraint stochastic/distributed optimization problems. A numerical experiment shows that G-CP strategy outperforms the standard strategy with a retraction [Absil-Mahony-Sepulchre, 08].