2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDIFS-6.2
Paper Title PRIVACY-ACCURACY TRADE-OFF OF INFERENCE AS SERVICE
Authors Yulu Jin, Lifeng Lai, University of California, Davis, United States
SessionIFS-6: Anonymization, Security and Privacy
LocationGather.Town
Session Time:Thursday, 10 June, 15:30 - 16:15
Presentation Time:Thursday, 10 June, 15:30 - 16:15
Presentation Poster
Topic Information Forensics and Security: [ADP] Anonymization And Data Privacy
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract In this paper, we propose a general framework to provide a desirable trade-off between inference accuracy and privacy protection in the inference as service scenario. Instead of sending data directly to the server, the user will preprocess the data through a privacy-preserving mapping, which will increase privacy protection but reduce inference accuracy. To properly address the trade-off between privacy protection and inference accuracy, we formulate an optimization problem to find the optimal privacy-preserving mapping. Even though the problem is non-convex in general, we characterize nice structures of the problem and develop an iterative algorithm to find the desired privacy-preserving mapping.