2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDSPE-20.2
Paper Title SMALL FOOTPRINT TEXT-INDEPENDENT SPEAKER VERIFICATION FOR EMBEDDED SYSTEMS
Authors Julien Balian, Raffaele Tavarone, Mathieu Poumeyrol, Alice Coucke, Sonos Inc., France
SessionSPE-20: Speaker Recognition 4: Applications
LocationGather.Town
Session Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Poster
Topic Speech Processing: [SPE-SPKR] Speaker Recognition and Characterization
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Deep neural network approaches to speaker verification have proven successful, but typical computational requirements of State-Of-The-Art (SOTA) systems make them unsuited for embedded applications. In this work, we present a two-stage model architecture orders of magnitude smaller than common solutions (237.5K learning parameters, 11.5MFLOPS) reaching a competitive result of 3.31% Equal Error Rate (EER) on the well established VoxCeleb1 verification test set. We demonstrate the possibility of running our solution on small devices typical of IoT systems such as the Raspberry Pi 3B with a latency smaller than 200ms on a 5s long utterance. Additionally, we evaluate our model on the acoustically challenging VOiCES corpus. We report a limited increase in EER of 2.6 percentage points with respect to the best scoring model of the 2019 VOiCES from a Distance Challenge, against a reduction of 25.6 times in the number of learning parameters.