2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDSS-10.1
Paper Title EXPLORING AUTOMATIC COVID-19 DIAGNOSIS VIA VOICE AND SYMPTOMS FROM CROWDSOURCED DATA
Authors Jing Han, Chloe Brown, Jagmohan Chauhan, Andreas Grammenos, Apinan Hasthanasombat, Dimitris Spathis, Tong Xia, Pietro Cicuta, Cecilia Mascolo, University of Cambridge, United Kingdom
SessionSS-10: Computer Audition for Healthcare (CA4H)
LocationGather.Town
Session Time:Thursday, 10 June, 13:00 - 13:45
Presentation Time:Thursday, 10 June, 13:00 - 13:45
Presentation Poster
Topic Special Sessions: Computer Audition for Healthcare (CA4H)
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract The development of fast and accurate screening tools, which could facilitate testing and prevent more costly clinical tests, is key to the current pandemic of COVID-19. In this context, some initial work shows promise in detecting diagnostic signals of COVID-19 from audio sounds. In this paper, we propose a voice-based framework to automatically detect individuals who have tested positive for COVID-19. We evaluate the performance of the proposed framework on a subset of data crowdsourced from our app, containing 828 samples from 343 participants. By combining voice signals and reported symptoms, an AUC of 0.79 has been attained, with a sensitivity of 0.68 and a specificity of 0.82. We hope that this study opens the door to rapid, low-cost, and convenient pre-screening tools to automatically detect the disease.