Paper ID | SPCOM-8.1 |
Paper Title |
DEEP WEIGHTED MMSE DOWNLINK BEAMFORMING |
Authors |
Lissy Pellaco, Mats Bengtsson, Joakim Jaldén, KTH Royal Institute of Technology, Sweden |
Session | SPCOM-8: Deep learning for communications |
Location | Gather.Town |
Session Time: | Friday, 11 June, 14:00 - 14:45 |
Presentation Time: | Friday, 11 June, 14:00 - 14:45 |
Presentation |
Poster
|
Topic |
Signal Processing for Communications and Networking: [SPC-ML] Machine Learning for Communications |
IEEE Xplore Open Preview |
Click here to view in IEEE Xplore |
Virtual Presentation |
Click here to watch in the Virtual Conference |
Abstract |
The weighted minimum mean square error (WMMSE) algorithm was proposed to provide a locally optimum solution to the otherwise NP-hard weighted sum rate maximization beamforming problem, but it can still be prohibitively complex for real-time implementation. With the success of deep unfolding in trading off complexity and performance, we propose to apply deep unfolding to the WMMSE algorithm. With respect to traditional end-to-end learning, deep unfolding incorporates expert knowledge, with the benefits of immediate and well-grounded architecture selection, fewer trainable parameters, and better explainability. However, the classical formulation of the WMMSE algorithm given by Shi et al. is not amenable for deep unfolding due to matrix inversions, eigendecompositions, and bisection searches. Therefore, we present an alternative formulation that circumvents these operations. By means of simulations, we show that the deep unfolded WMMSE algorithm performs on par with the original WMMSE algorithm, at a lower computational load. |