2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDBIO-8.2
Paper Title CHANNEL ATTENTION RESIDUAL U-NET FOR RETINAL VESSEL SEGMENTATION
Authors Changlu Guo, Márton Szemenyei, Budapest University of Technology and Economics, Hungary; Yangtao Hu, Hospital of the Peoples Liberation Army Joint Logistics Support Force, China; Wenle Wang, Jiangxi Normal University, China; Wei Zhou, Shenyang Institute of Computing Technology, Chinese Academy of Science, China; Yugen Yi, Jiangxi Normal University, China
SessionBIO-8: Biological Image Analysis
LocationGather.Town
Session Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Poster
Topic Biomedical Imaging and Signal Processing: [BIO-BIA] Biological image analysis
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Retinal vessel segmentation is a vital step for the diagnosis of many early eye-related diseases. In this work, we propose a new deep learning model, namely Channel Attention Residual U-Net (CAR-UNet), to accurately segment retinal vascular and non-vascular pixels. In this model, we introduced a novel Modified Efficient Channel Attention (MECA) to enhance the discriminative ability of the network by considering the interdependence between feature maps. On the one hand, we apply MECA to the "skip connections" in the traditional U-shaped networks, instead of simply copying the feature maps of the contracting path to the corresponding expansive path. On the other hand, we propose a Channel Attention Double Residual Block (CADRB), which integrates MECA into a residual structure as a core structure to construct the proposed CAR-UNet. The results show that our proposed CAR-UNet has reached the state-of-the-art performance on three publicly available retinal vessel datasets: DRIVE, CHASE DB1 and STARE.