2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDCI-2.2
Paper Title FUSION-BASED DIGITAL IMAGE CORRELATION FRAMEWORK FOR STRAIN MEASUREMENT
Authors Laixi Shi, Carnegie Mellon University, United States; Dehong Liu, Mitsubishi Electric Research Laboratories (MERL), United States; Masaki Umeda, Norihiko Hana, Mitsubishi Electric, Japan
SessionCI-2: Computational Imaging for Inverse Problems
LocationGather.Town
Session Time:Wednesday, 09 June, 15:30 - 16:15
Presentation Time:Wednesday, 09 June, 15:30 - 16:15
Presentation Poster
Topic Computational Imaging: [CIF] Computational Image Formation
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract We address the problem of enabling two-dimensional digital image correlation (DIC) for strain measurement on large three-dimensional objects with curved surfaces. It is challenging to acquire full-field qualified images of the surface required by DIC due to distortion and the narrow visual field of the surface that a single image can cover. To overcome this issue, we propose an end-to-end DIC framework incorporating the image fusion principle to achieve full-field strain measurement over the curved surface. With a sequence of blurry images as inputs, we first recover sharp images using blind deconvolution, then project recovered sharp images to the curved surface using camera poses estimated by our proposed perspective-n-point (PnP) method called RRWLM. Images on the curved surface are stitched and then unfolded for strain analysis using DIC. Numerical experiments are conducted to validate our framework using RRWLM with comparisons to existing methods.