2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDMLSP-47.1
Paper Title INTEGRATED CLASSIFICATION AND LOCALIZATION OF TARGETS USING BAYESIAN FRAMEWORK IN AUTOMOTIVE RADARS
Authors Anand Dubey, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany; Avik Santra, Infineon Technologies AG, Germany; Jonas Fuchs, Maximilian Luebke, Robert Weigel, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany; Fabian Lurz, Hamburg University of Technology, Germany
SessionMLSP-47: Applications of Machine Learning
LocationGather.Town
Session Time:Friday, 11 June, 14:00 - 14:45
Presentation Time:Friday, 11 June, 14:00 - 14:45
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-APPL] Applications of machine learning
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Automatic radar based classification of automotive targets, such as pedestrians and cyclist, poses several challenges due to low inter-class variations among different classes and large intra-class variations. Further, different targets required to track in typical automotive scenario can have completely varying dynamics which gets challenging for tracker using conventional state vectors. Compared to state-of-the-art using independent classification and tracking, in this paper, we propose an integrated tracker and classifier leading to a novel Bayesian framework. The tracker’s state vector in the proposed framework not only includes the localization parameters of the targets but is also augmented with the targets’s feature embedding vector. In consequence, the tracker’s performance is optimized due to a better separability of the targets. Furthermore, the classifier’s performance is enhanced due to Bayesian formulation utilizing the temporal smoothing of classifier’s embedding vector.