2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDAUD-21.4
Paper Title LEVERAGING THE STRUCTURE OF MUSICAL PREFERENCE IN CONTENT-AWARE MUSIC RECOMMENDATION
Authors Paul Magron, Cédric Févotte, IRIT, Université de Toulouse, CNRS, France
SessionAUD-21: Music Information Retrieval and Music Language Processing 4: Structure and Alignment
LocationGather.Town
Session Time:Thursday, 10 June, 14:00 - 14:45
Presentation Time:Thursday, 10 June, 14:00 - 14:45
Presentation Poster
Topic Audio and Acoustic Signal Processing: [AUD-MIR] Music Information Retrieval and Music Language Processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract State-of-the-art music recommendation systems are based on collaborative filtering, which predicts a user's interest from his listening habits and similarities with other users' profiles. These approaches are agnostic to the song content, and therefore face the cold-start problem: they cannot recommend novel songs without listening history. To tackle this issue, content-aware recommendation incorporates information about the songs that can be used for recommending new items. Most methods falling in this category exploit either user-annotated tags, acoustic features or deeply-learned features. Consequently, these content features do not have a clear musical meaning, thus they are not necessarily relevant from a musical preference perspective. In this work, we propose instead to leverage a model of musical preference which originates from the field of music psychology. From low-level acoustic features we extract three factors (arousal, valence and depth), which have been shown appropriate for describing musical taste. Then we integrate those into a collaborative filtering framework for content-aware music recommendation. Experiments conducted on large-scale data show that this approach is able to address the cold-start problem, while using a compact and meaningful set of musical features.