Paper ID | SPE-31.1 |
Paper Title |
MINIMUM BAYES RISK TRAINING FOR END-TO-END SPEAKER-ATTRIBUTED ASR |
Authors |
Naoyuki Kanda, Zhong Meng, Liang Lu, Yashesh Gaur, Xiaofei Wang, Zhuo Chen, Takuya Yoshioka, Microsoft, United States |
Session | SPE-31: Speech Recognition 11: Novel Approaches |
Location | Gather.Town |
Session Time: | Thursday, 10 June, 13:00 - 13:45 |
Presentation Time: | Thursday, 10 June, 13:00 - 13:45 |
Presentation |
Poster
|
Topic |
Speech Processing: [SPE-LVCR] Large Vocabulary Continuous Recognition/Search |
IEEE Xplore Open Preview |
Click here to view in IEEE Xplore |
Virtual Presentation |
Click here to watch in the Virtual Conference |
Abstract |
Recently, an end-to-end speaker-attributed automatic speech recognition (E2E SA-ASR) model was proposed as a joint model of speaker counting, speech recognition and speaker identification for monaural overlapped speech. In the previous study, the model parameters were trained based on the speaker-attributed maximum mutual information (SA-MMI) criterion, with which the joint posterior probability for multi-talker transcription and speaker identification are maximized over training data. Although SA-MMI training showed promising results for overlapped speech consisting of various numbers of speakers, the training criterion was not directly linked to the final evaluation metric, i.e., speaker-attributed word error rate (SA-WER). In this paper, we propose a speaker-attributed minimum Bayes risk (SA-MBR) training method where the parameters are trained to directly minimize the expected SA-WER over the training data. Experiments using the LibriSpeech corpus show that the proposed SA-MBR training reduces the SA-WER by 9.0 % relative compared with the SA-MMI-trained model. |