2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDSPTM-16.1
Paper Title NETWORK TOPOLOGY INFERENCE WITH GRAPHON SPECTRAL PENALTIES
Authors T. Mitchell Roddenberry, Madeline Navarro, Santiago Segarra, Rice University, United States
SessionSPTM-16: Graph Topology Inference
LocationGather.Town
Session Time:Thursday, 10 June, 14:00 - 14:45
Presentation Time:Thursday, 10 June, 14:00 - 14:45
Presentation Poster
Topic Signal Processing Theory and Methods: [SIPG] Signal and Information Processing over Graphs
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract We consider the problem of inferring the unobserved edges of a graph from data supported on its nodes. In line with existing approaches, we propose a convex program for recovering a graph Laplacian that is approximately diagonalizable by a set of eigenvectors obtained from the second-order moment of the observed data. Unlike existing work, we incorporate prior knowledge about the distribution from where the underlying graph was drawn. In particular, we consider the case where the graph was drawn from a graphon model, and we supplement our convex optimization problem with a provably-valid regularizer on the spectrum of the graph to be recovered. We present the cases where the graphon model is assumed to be known and the more practical setting where the relevant features of the model are inferred from auxiliary network observations. Numerical experiments on synthetic and real-world data illustrate the advantage of leveraging the proposed graphon prior, even when the prior is imperfect.