2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDSPTM-21.1
Paper Title ACCELERATING FRANK-WOLFE WITH WEIGHTED AVERAGE GRADIENTS
Authors Yilang Zhang, Bingcong Li, Georgios B. Giannakis, University of Minnesota, United States
SessionSPTM-21: Optimization Methods for Signal Processing
LocationGather.Town
Session Time:Friday, 11 June, 13:00 - 13:45
Presentation Time:Friday, 11 June, 13:00 - 13:45
Presentation Poster
Topic Signal Processing Theory and Methods: [OPT] Optimization Methods for Signal Processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Relying on a conditional gradient based iteration, the Frank-Wolfe (FW) algorithm has been a popular solver of constrained convex optimization problems in signal processing and machine learning, thanks to its low complexity. The present contribution broadens its scope by replacing the gradient per FW subproblem with a weighted average of gradients. This generalization speeds up the convergence of FW by alleviating its zigzag behavior. A geometric interpretation for the averaged gradients is provided, and convergence guarantees are established for three different weight combinations. Numerical comparison shows the effectiveness of the proposed methods.