2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDIVMSP-19.5
Paper Title DNANet: Dense Nested Attention Network for Single Image Dehazing
Authors Dongdong Ren, Artificial Intelligence Institute, Qilu University of Technology and School of Computer Science and Technology, Heilongjiang University, China; Jinbao Li, Qilu University of Technology (Shandong Academy of Sciences), Shandong Artificial Intelligence Institute, China; Meng Han, Data-driven Intelligence Research (DIR) Lab, Kennesaw State University, United States; Minglei Shu, Qilu University of Technology (Shandong Academy of Sciences), Shandong Artificial Intelligence Institute, China
SessionIVMSP-19: Deraining and Dehazing
LocationGather.Town
Session Time:Thursday, 10 June, 13:00 - 13:45
Presentation Time:Thursday, 10 June, 13:00 - 13:45
Presentation Poster
Topic Image, Video, and Multidimensional Signal Processing: [IVTEC] Image & Video Processing Techniques
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract In this paper, we propose an innovative approach, called Dense Nested Attention Network (DNANet), to directly restore a clear image from a hazy image with a new topology of connection paths. Firstly, through dense nested connections from inside to outside, the DNANet can fuse both shallow and deep features from fine to coarse, then strengthen the feature propagation and reuse to a large extent. We use stacked dilated convolutions, as the basic operation, to alleviate the shortcomings of the traditional context information aggregation methods. Secondly, we examine the weakness of skipping connections by reasoning the existence of residual haze from the shallow to deep layers in the neural network. To address this problem, we use the attention mechanism to filter out the output of residual haze by capturing the information relations on the entire skip feature maps. Thirdly, we introduce an adjustable loss constraint on each block of the outermost nested structure to gather more accurate features. The result demonstrates that DNANet outperforms state-of-the-art methods by a large margin on the benchmark datasets in extensive experiments.