2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDSPCOM-9.1
Paper Title DEEP ACTIVE LEARNING APPROACH TO ADAPTIVE BEAMFORMING FOR MMWAVE INITIAL ALIGNMENT
Authors Foad Sohrabi, Zhilin Chen, Wei Yu, University of Toronto, Canada
SessionSPCOM-9: Online and Active Learning for Communications
LocationGather.Town
Session Time:Friday, 11 June, 14:00 - 14:45
Presentation Time:Friday, 11 June, 14:00 - 14:45
Presentation Poster
Topic Signal Processing for Communications and Networking: [SPC-ML] Machine Learning for Communications
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract This paper proposes a deep learning approach to the adaptive and sequential beamforming design problem for the initial access phase in a mmWave environment with a single-path channel model. In particular, for a single-user scenario where the problem is equivalent to designing the sequence of sensing beamformers to learn the angle of arrival (AoA) of the dominant path, we propose a novel deep neural network (DNN) that designs a sequence of adaptive sensing vectors based on the available information so far at the base station (BS). By recognizing that the posterior distribution of the AoA provides sufficient statistic for solving the initial access problem, we consider the AoA posterior distribution as the main component of the input to the proposed DNN for designing the adaptive beamforming strategy. However, computing the AoA posterior distribution can be computationally challenging when the fading coefficient is unknown. To address this issue, this paper proposes to use the minimum mean squared error (MMSE) estimate of the fading coefficient to compute an approximation of the posterior distribution. Numerical results demonstrate that as compared to the existing adaptive beamforming schemes utilizing predesigned hierarchical codebooks, the proposed deep learning-based adaptive beamforming achieves a higher AoA detection performance.