2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDMLSP-36.1
Paper Title VISUAL PRIVACY PROTECTION VIA MAPPING DISTORTION
Authors Yiming Li, Peidong Liu, Yong Jiang, Shu-Tao Xia, Tsinghua University, China
SessionMLSP-36: Pattern Recognition and Classification 1
LocationGather.Town
Session Time:Thursday, 10 June, 16:30 - 17:15
Presentation Time:Thursday, 10 June, 16:30 - 17:15
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-PRCL] Pattern recognition and classification
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Privacy protection is an important research area, which is especially critical in this big data era. To a large extent, the privacy of visual classification data is mainly in the mapping between the image and its corresponding label, since this relation provides a great amount of information and can be used in other scenarios. In this paper, we propose the mapping distortion based protection (MDP) and its augmentation-based extension (AugMDP) to protect the data privacy by modifying the original dataset. In the modified dataset generated by MDP, the image and its label are not consistent ($e.g.$, a cat-like image is labeled as the dog), whereas the DNNs trained on it can still achieve good performance on benign testing set. As such, this method can protect privacy when the dataset is leaked. Extensive experiments are conducted, which verify the effectiveness and feasibility of our method. The code for reproducing main results is available at \url{https://github.com/PerdonLiu/Visual-Privacy-Protection-via-Mapping-Distortion}.