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Introduction and Motivation

. . . . Desired
Source extraction in noisy environments is ‘ source
ubiquitous in hands-free applications Pl )
NN Noise source
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To estimate the desired source we need to " '/H ! H\ a
\
estimate the transfer functions H,, 1// EE AN

] \
To extract the desired source as received C% 6 é}
S

by the first microphones we only need to A
H,  H

estimate H,,,/H;

= RTFs can be estimated from the data when the source is active

= We summarise state-of-the art estimators and propose an efficient
iterative RTF estimator suitable for real-time applications
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1. Signal Model and Source Extraction
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Signal Model

= Desired speech and noise signals captured by M microphones

u STFT-domain signal at time n, frequency k:

y(n, k) =x(n, k) +v(n, k)
h(n,k)S(n, k) +v(n, k)
=g(n,k) X1(n, k) +v(n, k)

= The RTF vector can be expressed in terms of the acoustic transfer
functions H,,(n, k):

g(n,k) = |1 ) HM("’k)]T

' Hl(nak), o Hl(nak)

= The RTF vector is time-dependent to model source movements
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Signal Model

= The power spectral density (PSD) matrices @, and ®,, are required
for RTF estimation

® The PSD matrix of the received signal:
D, (n, k) =Py(n, k) + Py(n, k)
u The PSD matrix of the desired signal:
Qm(n’ k) = ¢m1 (TL, k) g(n, k)gH(nv k) with ¢:c1 =E {|X1|2}

= The PSD matrix of the undesired signal, ®.,, can be estimated
during speech absence, or using speech presence
probability-controlled recursive averaging (Souden et al., 2011)
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Source Extraction

u Estimate of the desired signal:
Xi(n, k) = ( k)y(n, k)

= k) [g(n, k) X1(n, k) + v(n, k)]
= Distortionless response if wf g = 1
= Minimum Variance Distortionless Response (MVDR) filter:
w(n, k) = argmin w®,(n,k)w subjectto wg(n, k) =1
w

_ @, (nk) g(n.k)
g(n, k)" &, (n, k) g(n, k)

For real-time applications, the RTF vector needs to be efficiently
estimated online using the microphone signals y(n, k)
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2. Existing RTF Estimators
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Existing RTF Estimators
Method 1: Covariance Subtraction

= Recall the definition:
(ﬁm (Tl, k) = (Zsml (’I’L, k)g(na k)gH (nv k)
= The RTF can be obtained by

‘I’m (’I’L, k) €]

)= —2 D
9os(n. k) el ®,(n,k)er

with e, =[1,0,...,0]T

~

= In practice @, can be estimated using @w = <f>y — &,
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Existing RTF Estimators
Method 2: Covariance Subtraction with EVD

= The RTF vector g is proportional to the principal eigenvector of ®,,

= An estimate of the RTF vector is given by the principal eigenvector
Umax Of (I)m = Qy - Q'D

Umax (1, k)

k =
gcs—pvp (1, k) erlr Unae (72, F)

= The principal eigenvector of <I> — <I>v prowdes better performance
in spatial filtering than the column of <I» - <I» (Serizel et al., 2014)

R. Serizel et al., "Low-rank approximation based multichannel Wiener filter algorithms for
noise reduction with application in cochlear implants”, IEEE/ACM Transactions on ASLP,
2014
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Existing RTF Estimators
Method 3: Covariance Whitening

= A generalized eigenvalue problem:

(¢2,99™ + ®o) u = A\®yu
|y —
@y

® In theory: Only one eigenvalue \ # 1

® In practice: Use the principal eigenvector w5 of 'I>;1<I>y

D, (1, k) Unax (0, k
Gow(n k) = gl k) tmax(n, 1)
el @y (n, k) Umax (1, k)
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Existing RTF Estimators
Method 4: Covariance Whitening using PM
= Use power method to estimate the GEVD (Krueger et al., 2011)

= lteration matrix: Ag,(n, k) = &5 (n, k)® y(n, k)

Acy (n,k)Umax (n—1,k)
TAcw (n,k)Bmax (n—1,K)]]

® Power iteration: U< (n, k) =

= Compute the RTF vector:

~

<I>£(n k) Umax(n, k)
T®,(n, k) Umax(n, k)

gPM—CW(na k)

Krueger et al., "Speech enhancement with a GSC-like structure employing

eigenvector-based transfer function ratios estimation”, IEEE Transactions on ASLP, 2011
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Existing RTF Estimators
Summary

= Covariance-Subtraction: gcs
» Computationally efficient
u Covariance-Subtraction with EVD: gcs_wvp
» More accurate than gcgs (Serizel et al., 2014)
» Requires EVD
= Covariance-Whitening: gcw
» More accurate than gcg (Markovich-Golan et al., 2015)
» Requires GEVD

u Covariance-Whitening with PM: gpn—cw (Krueger et al., 2011)

S. Markovich-Golan et al., "Performance analysis of the CS method for relative transfer

function estimation and comparison to the CW method”, IEEE Transactions on ASLP, 2015
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3. Proposed RTF Estimator
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Proposed RTF Estimator

= Computing gpp_cw iS less complex than computing gw

m |t still involves the inversion of @v to compute Ay, and
multiplication by ®,, to obtain gpy;_cw from the eigenvector wax

= We propose to estimate gqg_gyp Using the power method

» lteration matrix:  Ae(n, k) = @y (n, k) — By (n, k)

» Power iteration:  @max(n, k) = |,QEZ'Z§5222§5:1’13||

ﬁmax (’l’l, k)

k) = max(W )
gPM—CS(n’ ) e’%‘ amax(n, k)
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4. Performance Evaluation
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Experimental Setup

Simulated room 4.5 x 4 x 3 m3, reverberation time Tgy = 0.3 s

Uniform 5-element linear array, inter-microphone distance 4 cm

= Microphone signals contain desired speech, directional interferer
(fan noise), and sensor noise
» signal-to-interference ratio (SIR): {0,000} dB
» signal-to-sensor noise ratios (SNRs): [—5, 15] dB

In all experiments, source-array distance was 1-1.2 m

STFT frame-size is 128 ms, overlap 50%, sampling rate 16 kHz

Noise PSD matrix:

1. Estimated in advance during speech absence (denoted by ”1d”)
2. Estimated using speech presence probability-based framework
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Results: Distance Measure

g™ (n, k) g(n. k)|
lg(n, K)] lg(n, k)|
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Hermitian Angle: ©(n, k) = arccos
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= Averaged O(n, k) over time segment of 15 s for all n and k

u CS-EVD outperforms CS and the error of the proposed PM-CS lies
between the two methods
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Results: Source Extraction Using MVDR

= MVDR filters using different RTF estimates

= Objective quality evaluation:
» Speech distortion (SD) index
» Signal to interference-plus-noise ratio (SINR) improvement
compared to the reference microphone

= The measures are computed for non-overlapping 30 ms frames and
are then averaged over all frames (15 seconds)
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Speech distortion (fan noise with 0 dB SIR)
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u |deal noise PSD matrix: The proposed PM-CS causes similar or
larger SD than the CS-EVD, but smaller than the CS

m Estimated noise PSD matrix: The distortion of PM-CS and CS-EVD
is comparable

m Estimated noise PSD matrix: PM-CS causes lower SD than CW
and PM-CW



SINR improvement (fan noise with 0 dB SIR)
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m CS provides less SINR improvement than the alternatives which is
consistent with (Markovich-Golan et al., 2015)

= Estimated noise PSD matrix: The proposed PM-CS has similar
SINR improvement than CS-EVD
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5. Conclusions
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Conclusions

= Motivated by the advantage of g-g_gyvp compared to gcg, we
proposed an iterative estimator to reduce the complexity

= Although the proposed PM-CS estimator has a greater
computationally complexity than the CS estimator, it is less complex
than the PM-CW estimator

= When the noise statistics are estimated, the performance of the
proposed estimator is comparable to the CS-EVD estimator
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Thank you for your attention.
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