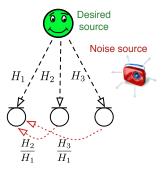


An Iterative Multichannel Subspace-Based Covariance Subtraction Method for Relative Transfer Function Estimation

Reza Varzandeh, Maja Taseska and Emanuël Habets

International Audio Laboratories Erlangen March 1, 2017



Introduction and Motivation

Source extraction in noisy environments is ubiquitous in hands-free applications

To estimate the desired source we need to estimate the transfer functions ${\cal H}_m$

To extract the desired source as received by the first microphones we only need to estimate H_m/H_1

- RTFs can be estimated from the data when the source is active
- We summarise state-of-the art estimators and propose an efficient iterative RTF estimator suitable for real-time applications

- 1. Signal Model and Source Extraction
- 2. Existing RTF Estimators
- 3. Proposed RTF Estimator
- 4. Performance Evaluation
- 5. Conclusions

1. Signal Model and Source Extraction

- 2. Existing RTF Estimators
- 3. Proposed RTF Estimator
- 4. Performance Evaluation
- 5. Conclusions

Signal Model

- Desired speech and noise signals captured by M microphones
- STFT-domain signal at time *n*, frequency *k*:

$$\begin{aligned} \boldsymbol{y}(n,k) &= \boldsymbol{x}(n,k) + \boldsymbol{v}(n,k) \\ &= \boldsymbol{h}(n,k) \, S(n,k) + \boldsymbol{v}(n,k) \\ &= \boldsymbol{g}(n,k) \, X_1(n,k) + \boldsymbol{v}(n,k) \end{aligned}$$

The RTF vector can be expressed in terms of the acoustic transfer functions $H_m(n,k)$:

$$\boldsymbol{g}(n,k) = \left[1, \frac{H_2(n,k)}{H_1(n,k)}, \cdots, \frac{H_M(n,k)}{H_1(n,k)}\right]^{\mathrm{T}}$$

The RTF vector is time-dependent to model source movements

Signal Model

- The power spectral density (PSD) matrices Φ_y and Φ_v are required for RTF estimation
- The PSD matrix of the received signal:

$$\pmb{\Phi}_{\pmb{y}}(n,k) = \pmb{\Phi}_{\pmb{x}}(n,k) + \pmb{\Phi}_{\pmb{v}}(n,k)$$

The PSD matrix of the desired signal:

$$\boldsymbol{\Phi}_{\boldsymbol{x}}(n,k) = \phi_{x_1}(n,k) \ \boldsymbol{g}(n,k) \boldsymbol{g}^{\mathrm{H}}(n,k) \text{ with } \phi_{x_1} = \mathrm{E}\left\{ |X_1|^2 \right\}$$

The PSD matrix of the undesired signal, Φ_v , can be estimated during speech absence, or using speech presence probability-controlled recursive averaging (Souden et al., 2011)

Source Extraction

Estimate of the desired signal:

$$\widehat{X}_1(n,k) = \boldsymbol{w}^{\mathrm{H}}(n,k) \, \boldsymbol{y}(n,k)$$
$$= \boldsymbol{w}^{\mathrm{H}}(n,k) \left[\boldsymbol{g}(n,k) \, X_1(n,k) + \boldsymbol{v}(n,k) \right]$$

Distortionless response if $w^{\mathrm{H}}g = 1$

Minimum Variance Distortionless Response (MVDR) filter:

$$\begin{split} \boldsymbol{w}(n,k) &= \mathop{\arg\min}_{\boldsymbol{w}} \, \boldsymbol{w}^{\mathrm{H}} \boldsymbol{\Phi}_{\boldsymbol{v}}(n,k) \boldsymbol{w} \quad \text{subject to} \quad \boldsymbol{w}^{\mathrm{H}} \, \boldsymbol{g}(n,k) = 1 \\ &= \frac{\boldsymbol{\Phi}_{\boldsymbol{v}}^{-1}(n,k) \, \boldsymbol{g}(n,k)}{\boldsymbol{g}(n,k)^{\mathrm{H}} \, \boldsymbol{\Phi}_{\boldsymbol{v}}^{-1}(n,k) \, \boldsymbol{g}(n,k)} \end{split}$$

For real-time applications, the RTF vector needs to be efficiently estimated online using the microphone signals ${\pmb y}(n,k)$

© AudioLabs 2017 Slide 6

1. Signal Model and Source Extraction

2. Existing RTF Estimators

- 3. Proposed RTF Estimator
- 4. Performance Evaluation
- 5. Conclusions

Existing RTF Estimators Method 1: Covariance Subtraction

Recall the definition:

$$\boldsymbol{\Phi}_{\boldsymbol{x}}(n,k) = \phi_{x_1}(n,k)\boldsymbol{g}(n,k)\boldsymbol{g}^{\mathrm{H}}(n,k)$$

The RTF can be obtained by

$$\boldsymbol{g}_{\mathrm{CS}}(n,k) = \frac{\boldsymbol{\Phi}_{\boldsymbol{x}}(n,k) \, \boldsymbol{e}_1}{\boldsymbol{e}_1^{\mathrm{T}} \boldsymbol{\Phi}_{\boldsymbol{x}}(n,k) \, \boldsymbol{e}_1} \quad \text{with} \quad \boldsymbol{e}_1 = [1,0,\ldots,0]^{\mathrm{T}}$$

In practice Φ_x can be estimated using $\widehat{\Phi}_x = \widehat{\Phi}_y - \widehat{\Phi}_v$

An Iterative Covariance Subtraction Method for RTF Estimation Reza Varzandeh, Maja Taseska and Emanuël Habets

Existing RTF Estimators

Method 2: Covariance Subtraction with EVD

- The RTF vector g is proportional to the principal eigenvector of Φ_x
- An estimate of the RTF vector is given by the principal eigenvector u_{\max} of $\widehat{\Phi}_x = \widehat{\Phi}_y \widehat{\Phi}_v$

$$\boldsymbol{g}_{\text{CS-EVD}}(n,k) = \frac{\boldsymbol{u}_{\max}(n,k)}{\boldsymbol{e}_1^{\text{T}} \; \boldsymbol{u}_{\max}(n,k)}$$

The principal eigenvector of $\widehat{\Phi}_y - \widehat{\Phi}_v$ provides better performance in spatial filtering than the column of $\widehat{\Phi}_y - \widehat{\Phi}_v$ (Serizel et al., 2014)

R. Serizel *et al.*, "Low-rank approximation based multichannel Wiener filter algorithms for noise reduction with application in cochlear implants", IEEE/ACM Transactions on ASLP, 2014

Existing RTF Estimators Method 3: Covariance Whitening

A generalized eigenvalue problem:

$$\underbrace{(\phi_{x_1} g g^{\mathrm{H}} + \Phi_{v})}_{\Phi_{y}} u = \lambda \Phi_{v} u$$

- In theory: Only one eigenvalue $\lambda \neq 1$
- In practice: Use the principal eigenvector u_{\max} of $\Phi_v^{-1}\Phi_y$

$$\boldsymbol{g}_{\mathrm{CW}}(n,k) = \frac{\widehat{\boldsymbol{\Phi}}_{\boldsymbol{v}}(n,k) \, \boldsymbol{u}_{\mathrm{max}}(n,k)}{\boldsymbol{e}_{1}^{\mathrm{T}} \widehat{\boldsymbol{\Phi}}_{\boldsymbol{v}}(n,k) \, \boldsymbol{u}_{\mathrm{max}}(n,k)}$$

© AudioLabs 2017 Slide 10 An Iterative Covariance Subtraction Method for RTF Estimation Reza Varzandeh, Maja Taseska and Emanuël Habets

Existing RTF Estimators Method 4: Covariance Whitening using PM

- Use power method to estimate the GEVD (Krueger et al., 2011)
- Iteration matrix: $A_{cw}(n,k) = \widehat{\Phi}_{v}^{-1}(n,k)\widehat{\Phi}_{y}(n,k)$
- **Power iteration:** $\hat{u}_{\max}(n,k) = \frac{A_{\text{cw}}(n,k)\hat{u}_{\max}(n-1,k)}{\|A_{\text{cw}}(n,k)\hat{u}_{\max}(n-1,k)\|}$
- Compute the RTF vector:

$$\boldsymbol{g}_{\mathrm{PM-CW}}(n,k) = \frac{\widehat{\boldsymbol{\Phi}}_{\boldsymbol{v}}(n,k)\,\widehat{\boldsymbol{u}}_{\mathrm{max}}(n,k)}{\boldsymbol{e}_{1}^{\mathrm{T}}\widehat{\boldsymbol{\Phi}}_{\boldsymbol{v}}(n,k)\,\widehat{\boldsymbol{u}}_{\mathrm{max}}(n,k)}$$

Krueger et al., "Speech enhancement with a GSC-like structure employing eigenvector-based transfer function ratios estimation", IEEE Transactions on ASLP, 2011

Existing RTF Estimators Summary

- Covariance-Subtraction: g_{CS}
 - Computationally efficient
- Covariance-Subtraction with EVD: g_{CS-EVD}
 - ▶ More accurate than g_{CS} (Serizel et al., 2014)
 - Requires EVD
- Covariance-Whitening: $g_{\rm CW}$
 - ► More accurate than g_{CS} (Markovich-Golan et al., 2015)
 - Requires GEVD
- Covariance-Whitening with PM: g_{PM-CW} (Krueger et al., 2011)

S. Markovich-Golan *et al.*, "Performance analysis of the CS method for relative transfer function estimation and comparison to the CW method", IEEE Transactions on ASLP, 2015

- 1. Signal Model and Source Extraction
- 2. Existing RTF Estimators

3. Proposed RTF Estimator

- 4. Performance Evaluation
- 5. Conclusions

Proposed RTF Estimator

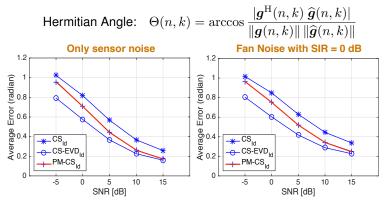
- Computing $m{g}_{
 m PM-CW}$ is less complex than computing $m{g}_{
 m CW}$
- It still involves the inversion of $\widehat{\Phi}_v$ to compute $A_{\rm cw}$, and multiplication by $\widehat{\Phi}_v$ to obtain $g_{\rm PM-CW}$ from the eigenvector $u_{\rm max}$
- We propose to estimate $g_{\rm CS-EVD}$ using the power method
 - ▶ Iteration matrix: $A_{cs}(n,k) = \widehat{\Phi}_y(n,k) \widehat{\Phi}_v(n,k)$
 - ► Power iteration: $\widehat{u}_{\max}(n,k) = \frac{A_{cs}(n,k)\widehat{u}_{\max}(n-1,k)}{\|A_{cs}(n,k)\widehat{u}_{\max}(n-1,k)\|}$

$$oldsymbol{g}_{\mathrm{PM-CS}}(n,k) = rac{\widehat{oldsymbol{u}}_{\mathrm{max}}(n,k)}{oldsymbol{e}_{\mathrm{T}}^{\mathrm{T}}\,\widehat{oldsymbol{u}}_{\mathrm{max}}(n,k)}$$

© AudioLabs 2017 Slide 14 An Iterative Covariance Subtraction Method for RTF Estimation Reza Varzandeh, Maja Taseska and Emanuël Habets

- 1. Signal Model and Source Extraction
- 2. Existing RTF Estimators
- 3. Proposed RTF Estimator
- 4. Performance Evaluation
- 5. Conclusions

Experimental Setup

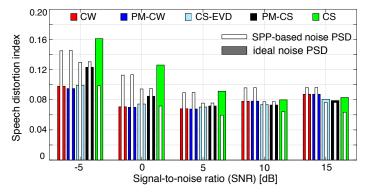

- Simulated room $4.5 \times 4 \times 3 \text{ m}^3$, reverberation time $T_{60} = 0.3 \text{ s}$
- Uniform 5-element linear array, inter-microphone distance 4 cm
- Microphone signals contain desired speech, directional interferer (fan noise), and sensor noise
 - ▶ signal-to-interference ratio (SIR): $\{0,\infty\}$ dB
 - ▶ signal-to-sensor noise ratios (SNRs): [-5, 15] dB
- In all experiments, source-array distance was 1-1.2 m
- STFT frame-size is 128 ms, overlap 50%, sampling rate 16 kHz

Noise PSD matrix:

- 1. Estimated in advance during speech absence (denoted by "Id")
- 2. Estimated using speech presence probability-based framework

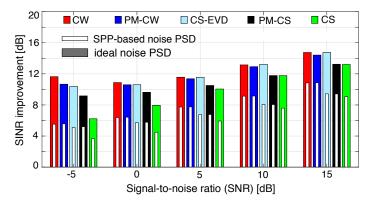
Results: Distance Measure

- Averaged $\Theta(n,k)$ over time segment of 15 s for all n and k
- CS-EVD outperforms CS and the error of the proposed PM-CS lies between the two methods



Results: Source Extraction Using MVDR

- MVDR filters using different RTF estimates
- Objective quality evaluation:
 - Speech distortion (SD) index
 - Signal to interference-plus-noise ratio (SINR) improvement compared to the reference microphone
- The measures are computed for non-overlapping 30 ms frames and are then averaged over all frames (15 seconds)



Speech distortion (fan noise with 0 dB SIR)

- Ideal noise PSD matrix: The proposed PM-CS causes similar or larger SD than the CS-EVD, but smaller than the CS
- Estimated noise PSD matrix: The distortion of PM-CS and CS-EVD is comparable
- Estimated noise PSD matrix: PM-CS causes lower SD than CW and PM-CW

SINR improvement (fan noise with 0 dB SIR)

- CS provides less SINR improvement than the alternatives which is consistent with (Markovich-Golan et al., 2015)
- Estimated noise PSD matrix: The proposed PM-CS has similar SINR improvement than CS-EVD

- 1. Signal Model and Source Extraction
- 2. Existing RTF Estimators
- 3. Proposed RTF Estimator
- 4. Performance Evaluation
- 5. Conclusions

Conclusions

- Motivated by the advantage of $g_{\rm CS-EVD}$ compared to $g_{\rm CS}$, we proposed an iterative estimator to reduce the complexity
- Although the proposed PM-CS estimator has a greater computationally complexity than the CS estimator, it is less complex than the PM-CW estimator
- When the noise statistics are estimated, the performance of the proposed estimator is comparable to the CS-EVD estimator

Thank you for your attention.

© AudioLabs 2017 Slide 23 An Iterative Covariance Subtraction Method for RTF Estimation Reza Varzandeh, Maja Taseska and <u>Emanuël Habets</u>

