Technical Program
NSSIMa.PD: New Sensing and Statistical Inference Methods I |
Symposium: New Sensing and Statistical Inference Methods |
Session Type: Poster |
Time: Tuesday, December 3, 13:30 - 15:30 |
Location: Poster Area D |
NSSIMa.PD.1: PLUG-AND-PLAY PRIORS FOR MODEL BASED RECONSTRUCTION |
Singanallur Venkatakrishnan; Purdue University |
Charles A. Bouman; Purdue University |
Brendt Wohlberg; Los Alamos National Laboratory |
NSSIMa.PD.2: SINGLE IMAGE SUPER RESOLUTION VIA MANIFOLD LINEAR APPROXIMATION USING SPARSE SUBSPACE CLUSTERING |
Chinh Dang; Michigan State University |
Mohammad Aghagolzadeh; Michigan State University |
Abdolreza Moghadam; Michigan State University |
Hayder Radha; Michigan State University |
NSSIMa.PD.3: SPATIO-SPECTRAL ANOMALOUS CHANGE DETECTION IN HYPERSPECTRAL IMAGERY |
James Theiler; Los Alamos National Laboratory |
NSSIMa.PD.4: LOCAL ERROR DETECTION IN SPARSE MAGNETIC RESONANCE IMAGING |
Vimal Singh; The University of Texas at Austin |
Ahmed H. Tewfik; The University of Texas at Austin |
NSSIMa.PD.5: FUNDAMENTAL LIMITS FOR SUPPORT RECOVERY OF TREE-SPARSE SIGNALS FROM NOISY COMPRESSIVE SAMPLES |
Akshay Soni; University of Minnesota, Twin Cities |
Jarvis Haupt; University of Minnesota, Twin Cities |
NSSIMa.PD.6: ROBUST AND SPARSE ESTIMATION OF TENSOR DECOMPOSITIONS |
Hyon-Jung Kim; Aalto University |
Esa Ollila; Aalto University |
Visa Koivunen; Aalto University |
Christophe Croux; K.U. Leuven |
NSSIMa.PD.7: MULTISCALE SPARSE REPRESENTATION CLASSIFICATION FOR ROBUST HYPERSPECTRAL IMAGE ANALYSIS |
Minshan Cui; University of Houston |
Saurabh Prasad; University of Houston |
NSSIMa.PD.8: NEARLY OPTIMAL LINEAR EMBEDDINGS INTO VERY LOW DIMENSIONS |
Elyot Grant; Massachusetts Institute of Technology |
Chinmay Hegde; Massachusetts Institute of Technology |
Piotr Indyk; Massachusetts Institute of Technology |
NSSIMa.PD.9: LEARNING OVERCOMPLETE DICTIONARIES WITH L0-SPARSE NON-NEGATIVE MATRIX FACTORISATION |
Ken O'Hanlon; Queen Mary, University of London |
Mark D. Plumbley; Queen Mary, University of London |
NSSIMa.PD.10: LEARNING FEATURES IN DEEP LEARNING ARCHITECTURES WITH UNSUPERVISED KERNEL K-MEANS |
Karl Ni; Lawrence Livermore National Laboratory |
Ryan Prenger; Lawrence Livermore National Laboratory |
NSSIMa.PD.11: COMPRESSIVE ANOMALY DETECTION IN LARGE NETWORKS |
Xiao Li; University of California, Davis |
H. Vincent Poor; Princeton University |
Anna Scaglione; University of California, Davis |
NSSIMa.PD.12: BAYESIAN PAIRWISE COLLABORATION DETECTION IN EDUCATIONAL DATASETS |
Andrew Waters; Rice University |
Christoph Studer; Rice University |
Richard Baraniuk; Rice University |
NSSIMa.PD.13: CLUSTERING ON MULTI-LAYER GRAPHS VIA SUBSPACE ANALYSIS ON GRASSMANN MANIFOLDS |
Xiaowen Dong; École Polytechnique Fédérale de Lausanne |
Pascal Frossard; École Polytechnique Fédérale de Lausanne |
Pierre Vandergheynst; École Polytechnique Fédérale de Lausanne |
Nikolai Nefedov; Eidgenössische Technische Hochschule Zürich |
NSSIMa.PD.14: THRESHOLD EFFECTS IN PARAMETER ESTIMATION FROM COMPRESSED DATA |
Pooria Pakrooh; Colorado State University |
Ali Pezeshki; Colorado State University |
Louis L. Scharf; Colorado State University |
NSSIMa.PD.15: SPARSE REPRESENTATION CLASSIFICATION VIA SEQUENTIAL LASSO SCREENING |
Yun Wang; Princeton University |
Xu Chen; Princeton University |
Peter J. Ramadge; Princeton University |
NSSIMa.PD.16: A THEORETICAL FRAMEWORK FOR SURROGATE SUPERVISION MULTIVIEW LEARNING |
Raviv Raich; Oregon State University |