Technical Program

SiG-DML_L2: Interpretable Machine Learning

Session Type: Lecture
Time: Wednesday, August 31, 11:00 - 12:40
Location: Atlantic 3
Session Chair: Nikos Deligiannis, Vrije Universiteit Brussel
 
SiG-DML_L2.1: HYBRID INFERENCE WITH INVERTIBLE NEURAL NETWORKS IN FACTOR GRAPHS
Bart van Erp, Bert de Vries, Eindhoven University of Technology, Netherlands
 
SiG-DML_L2.2: LEARNING-BASED SCATTERING TRANSFORM FOR EXPLAINABLE CLASSIFICATION
Thomas Mahiout, Laurent Deruaz-Pepin, Thales DMS, France; Lionel Fillatre, Université Côte d'Azur, I3S, France
 
SiG-DML_L2.3: AUTOMATIC SELECTION OF LATENT VARIABLES IN VARIATIONAL AUTO-ENCODERS
Emma Jouffroy, CEA - University of Bordeaux- IMS - UMR CNRS 5218, France; Audrey Giremus, Yannick Berthoumieu, University of Bordeaux- IMS - UMR CNRS 5218, France; Bach Olivier, Alain Hugget, CEA, France
 
SiG-DML_L2.4: TOWARDS INTERPRETING DEEP LEARNING MODELS FOR INDUSTRY 4.0 WITH GATED MIXTURE OF EXPERTS
ALAAEDDINE Chaoub, Université de Lorraine, Laboratoire Lorrain de Recherche en Informatique et ses Applications, France; Christophe Cerisara, Université de Lorraine, Centre national de la recherche scientifique, Laboratoire Lorrain de Recherche en Informatique et ses Applications, France; Alexandre Voisin, Benoît Iung, Université de Lorraine, Centre national de la recherche scientifique, Centre de Recherche en Automatique de Nancy, France
 
SiG-DML_L2.5: ON INTERPRETABILITY OF CNNS FOR MULTIMODAL MEDICAL IMAGE SEGMENTATION
Srdan Lazendic, Jens Janssens, Shaoguang Huang, Aleksandra Pizurica, Ghent University, Belgium