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Abstract: Orienting in an unknown, fast-changing environment 
is a crucial challenge met “effortlessly” by the brain. At 
ComBra Lab, we are developing the Gridbot, an autonomous 
neurobot controlled by a “bottom-up” Spiking Neural Network 
(SNN) model of brain networks that are associated with self-
orientation and motor planning. By mimicking neurobiology, 
we developed an SNN that combined the neural representations 
of visual and self-motion cues and produced the behavior of 
accurately estimating head orientation. The SNN employed a 
spike-based Bayesian inference on the outputs of simulated 
head direction (HD) and border cells in a recursive way: The 
HD cell layer encoded in its spiking activity the HD likelihood 
distribution by integrating self-motion inputs; Similarly, the 
Border cell layer encoded the landmark likelihood distribution 
from visual observation and environmental mapping; Finally, 
a Bayesian inference layer generated a corrective distribution 
for the HD layer. Here we show results from implementing our 
model in the Robot Operating System and show how the SNN 
mimics the behavioral abilities observed in mammals, in 
localizing the HD and learning the environment. 
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Introduction 
Navigating in a dynamic environment is a crucial task for the 
primitive brain. Animals and humans use esoteric cues from 
their body and external environment landmarks to locate 
themselves. Over the past decades, a large set of specialized 
neurons have been found to form a spatial localization system 
in the brain (Hartley & Lever, 2014): Grid cells in the 
dorsomedial entorhinal cortex are related to speed integration 
and localization; Place cells in the hippocampus are related 
to path integration and planning; Border cells (BC) represent 
environmental information; Head direction (HD) cells are 
limbic neurons that provide orientation information to the 
spatial system. Despite the multitude of experimental studies, 
how the observed behavior emerges from the 
interconnectivity among the aforementioned and other cells 
remains a mystery. Therefore, any bioinspired model 
employing these neurons needs to adhere to a number of 
extrapolations that will fill in the gaps of knowledge. 

This paper describes our ongoing effort to develop a 
biologically constrained model of the brain’s navigation 
system that will be the controller of an autonomously moving 
robot. Specifically, here we describe a spiking neural network 

(SNN) model where HD cells combine direction cues from 
both self-motion and environmental cues. We show how the 
SNN can use a dedicated layer to do Bayesian inference in 
integrating different cues encoded by HD cells and BCs and 
give an accurate neural representation of the HD. 

A Spiking Neuron Model of the Brain’s 
Navigational System 

We developed a model of 3,900 LIF neurons. The layers of 
the recursive SNN as well as its inputs are shown in Fig. 1a. 
The HD layer consisted of 360 neurons forming a continue 
attractor neural network (CANN) model (Stringer & 
Trappenberg, 2002): Each HD cell had a single preferred 
head direction (with 1o resolution) for which it fired at a 
maximum rate (Fig 1b). Preserving spatial relationship, 
adjacent HD cells formed through their firing a distribution 
of possible HDs. Each HD cell connected to 2 rotation 
neurons (cyan blocks in Fig 1a) encoding angular velocity 
with additive Gaussian noise. The firing of these neurons 
shifted the attractor state of the HD cells towards left or right. 

BCs were activated by border-like landmarks at a single 
preferred direction and distance. BCs are known to fire for 
landmarks within and without the field of view. To account 
for this, we first used an egocentric BC to encode visual 
information and then transformed the spiking activities from 
egocentric to allocentric, guided by the HD cell firing. 
Synaptic plasticity (long term potentiation-LTP) allowed the 
allocentric BC layer to learn the observed environment via 
persistent spike activity (Fig. 1g). We used a Bayesian 
inference (BI) layer to correct the neural representation of the 
head orientation in the HD cell layer. The BI layer received 
inputs from both visual landmark likelihood neurons and 
speed-driven HD cells (Fig. 1f) and drove strongly the HD 
cell layer every 1s to correct it (Fig. 1c; 1d). Neurons in the 
BI layer integrated the logarithmically decaying dendritic 
currents, approximating the nonlinear dendritic processes. 

We developed our model in the Robot Operating System 
(ROS) simulating the Turtlebot 2 robot in two environments 
(Fig. 2e). Each SNN layer was a node in ROS, and different 
layers communicated with each other using topics with 
customized spiking or current messages. Neuron membrane 
voltages were updated using the Euler method every 10ms. 
The contribution of a spike to the post-synaptic current 
decaying exponentially with time.



 
 
Figure 1: a) The proposed SNN employing Bayesian cue integration of external (vision) and internal (speed) information to 
estimate the HD. b) The tuning curves of 2 HD cells with preferred direction 180 and 280 degrees. c) Spiking activities for HD 
cells when applying Bayesian correction on the HD cell layer. d) Correction for the error drift through the Bayesian cue 
integration. e) Two robotic simulation environments in Gazebo simulator. f) Spiking activities of likelihood neurons, HD cells 
and Bayesian inference neurons during the experiment. Above for environment 1, below for environment 2. g) Learned map 
of the environment represented by spiking activities of allocentric border cells. Top: environment 1; Bottom: environment 2. 
 

Discussion and Conclusion 
We briefly presented our efforts in developing a neurobot that 
uses a neurobiologically constrained SNN to autonomously 
orient itself in an unknown environment and therefore 
exercise intelligent behavior similar to the one found in 
animals. To fully solve the problem of localization at the 
neural level, we described how an SNN model employing HD 
cells and BCs need to be reinforced by a BI layer. This 
allowed us to accurately estimate HD and learn a map of the 
visually observed environment. The biological relevance of 
the visual cue integration to the HD representation via BCs is 
further reinforced by experimental studies showing that the 
visual information contributes to the accuracy of the direction 
representation in HD cells. In agreement with our results (Fig. 
1d), the absence of visual input to the biological HD cells 
introduces a gradual drift due to an error accumulation 
(Taube, 1998). However, the visual information by itself can't 
provide the ground truth of HD, since it is also a noisy signal. 
Interestingly, reinforced by neurobiological and behavioral 
evidences, our proposed SNN model offers an alternative to 
normal weighted cue integration methods (Taube, 2007). 
Overall, our real-time spiking neural model mimics the 

behavioral abilities observed in mammals, in terms of 
localizing the HD and mapping the surrounding environment, 
while it compensates for the hardware limitations as well as 
its own intrinsic imperfections. 
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