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Abstract
A method of estimating and verifying individuals’ visual
encoding time is proposed using traditional EEG mea-
sures before decision processing of visual information.
Hierarchical Bayesian inference was used to jointly ob-
tain posterior distributions of drift-diffusion model pa-
rameters as well as the effect of traditional and single-
trial ERP measures on these parameters in a single-step.
The possibility of using single-trial N200 and traditional
N1 ERP latencies as estimates of human visual encoding
time is explored in the framework of a neurocognitive the-
ory of visual encoding, rapid decision-making, and motor
preparation. Using data from two experiments, posterior
distributions of linear-effect parameters suggest that EEG
responses to the onset of visual stimuli reflect stimulus
encoding times in low visual noise conditions. However
the ability of these neural signals to track visual encoding
time is dependent upon the quality of the external signal
itself.
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Introduction
While research exists on the time course of primates’ visual
system in response to external visual inputs (Schmolesky et
al., 1998), the time course of humans’ visual response re-
mains largely unexplored due to the invasiveness of prevailing
techniques (e.g. single-cellular recordings). The electroen-
cephalogram (EEG) is a noninvasive technique that records
cortical synaptic activity that is synchronized across the cor-
tex and is thought to represent higher-level function in electro-
physiology (P. L. Nunez & Srinivasan, 2006). In an exploratory
analysis, we propose a method of estimating and verifying
individuals’ visual encoding time using traditional EEG mea-
sures before decision processing of visual information. These
techniques are based on joint estimation of traditional event-
related potentials (ERPs) and cognitive models of percep-
tual decision making that describe human reaction time and
choice distributions.

A quantitative neurocognitive theory of visual encoding,
rapid decision-making, and motor preparation is proposed that
explains EEG measures of encoding, EEG measures of mo-

tor preparation, behavioral accuracy in two alternative forced
choice (2AFC) tasks, and reaction time distributions. The the-
ory is an extension of a class of Decision-Diffusion Models
(e.g. “drift-diffusion” models, see Ratcliff & McKoon, 2008, for
a review) which predicts that reaction time and accuracy are
explained by a continuous accumulation of evidence towards
certain pre-decided evidence thresholds (see Figure 1).

It is thought that particular latencies of peaks in event re-
lated potentials (ERPs; EEG in response to stimuli at certain
time points) on single trials predict decision making processes
(M. D. Nunez et al., 2017) and, in particular, reflect encoding
time of visual stimuli (Loughnane et al., 2016). Here encod-
ing time is defined as the amount of time for visual process-
ing to occur in the human brain before decision processes
can begin. Behaviorally, trial-to-trial differences and subject-
to-subject differences in encoding time are predicted to affect
only trial-to-trial and subject-to-subject differences in the onset
of reaction time distributions, not the reaction time distribution
shapes or accuracy, reflecting the fact that encoding does not
affect the decision making process itself.

Methods

Decision-diffusion modeling was applied to reaction time and
accuracy data from Experiment 1 that accounted for single-
trial changes in non-decision time τ = τe + τm, within-trial ev-
idence accumulation rate δ and within-trial evidence accumu-
lation standard deviation ς that were linearly related to single-
trial changes in single-trial N200 amplitudes, single-trial N200
latencies, single-trial P300 amplitudes, single-trial P300 laten-
cies, and two steady-state visual evoked potential (30 Hz and
40 Hz stimulus frequency tagged EEG responses). These lin-
ear relationships were estimated in a single-step in a hierar-
chical Bayesian framework (e.g. see M. D. Nunez et al., 2017).
Decision-diffusion modeling was also applied to reaction time
and accuracy data from Experiments 1 & 2 jointly (data con-
sisted of 12 unique subjects with 2 sessions of EEG each and
4 unique subjects with 7 sessions of EEG each respectively),
containing between session-differences in non-decision time
τ, within-trial evidence accumulation rate δ, and speed accu-
racy trade-off parameter α that were explained by session dif-
ferences in traditional N1 latencies (first negative peak laten-
cies of ERPs; see Luck et al., 2000) of subject-level ERPs



Figure 1: A graphical illustration of a Neural Decision Diffusion
model in which the encoding time τe on single-trials describes the
latency of the negative peaks of the EEG on 146 single-trials in oc-
cipital and parietal locations. Single-trial observations of the N200
latency are found by using a decomposition of the average ERP re-
sponse at each electrode and then biasing the raw EEG by the re-
sulting channel weights (this algorithm is detailed by M. D. Nunez et
al., 2017). Total non-decision time τ reflects both stimulus encoding
time τe as well as residual motor response τm (i.e. motor preparation
time after the decision is made) and can be estimated from reaction
time distributions.

Discussion of results

Posterior distributions of model parameters for 7 subjects’
single-trial N200 linear effects on single-trial non-decision time
(the sum of encoding and motor response time as estimated
by a hierarchical Bayesian account of a decision-diffusion
model) support the hypothesis of a 1-to-1 correspondence
(see Figure 2) during a two alternative forced choice (2AFC)
task in which participants had to differentiate between high
and low spatial frequency Gabors. However, this relationship
between N200 latency and non-decision time was weaker and
non-existent in medium and high noise conditions. In medium
and high noise conditions, further processing may be required
to estimate encoding time from single-trial N200 latency mea-
sures by introducing other sources of variance. In low noise
condition, the evidence suggests that the EEG response to
the onset of the stimulus reflects visual encoding time.

When exploring the relationship between cortical process-
ing time (as measured by early ERP latencies) and subject-
to-subject differences in non-decision time, the ability of ERP
latencies to reflect visual encoding time is more clearly de-
pendent upon the quality of visual stimuli. In two experiments
with different noise types (checkerboard visual distractor over-
layed on Gabor stimuli in Experiment 1 and bandpass filtered
broadband noise overlayed on Gabor stimuli in Experiment 2),
the effects of session-level N1 latency differences on session-
level non-decision time differences (assumed by the model to
be the sum of visual encoding and residual motor response
time) are mediated by the contrast condition of the visual dis-
tractors. This suggest that how well the peak neural signal la-
tency tracks visual encoding time is dependent upon the qual-
ity of the external signal itself. It is also possible that the sim-
ple decision-diffusion model does not provide a satisfactory

Figure 2: The posterior distributions of the effect of a trial’s N200
latency (a visual processing component of the signal stimulus) on
trial-specific non-decision times for each subject in a low noise con-
dition. Thick lines forming the distribution functions represent 95%
credible intervals while thin lines represent 99% credible intervals.
Crosses and vertical lines represent posterior means and modes re-
spectively. Also shown are the topographic representations of the
channel weights of the first SVD component of each subject’s ERP,
indicating the location of single-trial N200s over occipital and parietal
electrodes.

account of visual encoding. Or that the beginning of the neg-
ative deflection of the single-trial and subject-level EEG is a
better indicator of encoding time. Initial evidence for this latter
hypothesis is that early negative deflections better match vi-
sual encoding time as estimated by other modalities (e.g. see
Schmolesky et al., 1998)
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