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Abstract
It has been well-established that rodent’s Entorhinal Cor-
tex (EC) contains a rich set of spatial correlates which are
essential for spatial navigation, including grid cells which
encode space using tessellating patterns. Although in-
tensely investigated, the mechanisms and functional sig-
nificance of these spatial representations remain largely
mysterious. As a new way to address these questions, we
trained recurrent neural networks (RNN) to perform navi-
gation tasks in 2-d arenas based on velocity inputs. Sur-
prisingly, we find that grid-like spatial response patterns
emerge in trained networks, along with units that exhibit
other spatial correlates, e.g., border cells and band-like
cells. All these different functional types of neurons have
been observed experimentally. Our results suggest that
grid cells, border cells and others as observed in EC may
be a natural solution for representing space efficiently
given the predominant recurrent connections in the neu-
ral circuits.
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Introduction
Neural circuits often need to maintain an internal representa-
tion of cognitive variables without external stimuli. Here we will
focus on spatial navigation, which typically requires the brain
to maintain a representation of location and update it accord-
ing to the animal’s movement and landmarks of the environ-
ment. Studies in rodent neurophysiology have revealed a rich
set of neural correlates of space in Entorhinal Cortex (EC),
including grid cells (Fyhn, Molden, Witter, Moser, & Moser,
2004; Hafting, Fyhn, Molden, Moser, & Moser, 2005), along
with border cells, band-like cells and others (see Fig. 1a).
The study of the neural underpinning of spatial cognition has
provided an important window into how high-level cognitive
functions are supported by the neural system. How might the
spatial navigation task be solved using a network of neurons?
Recurrent neural networks (RNN) seem to be particularly use-
ful for these tasks. Indeed, recurrent-based continuous at-
tractor networks have been one of the main types of models
proposed for the formation of grid cells, e.g., (McNaughton,
Battaglia, Jensen, Moser, & Moser, 2006) ). However, these
models require fined tuned connectivity patterns, and the evi-
dence of such connectivity patterns has been largely absent.
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Here we present a new approach for understanding the
spatial representation in EC. Specially, we trained a RNN to
perform spatial navigation tasks. We show that training a RNN
with biologically relevant constraints naturally gives rise to a
variety of spatial response profiles as observed in rodent EC,
including grid-like responses. Our result implies that the neu-
ral representation in rodent EC may be seen as a natural way
for the brain to solve the navigation task efficiently. More gen-
erally, it suggests that RNNs can be a powerful tool for under-
standing the neural mechanisms of certain high-level cognitive
functions†.

Model
Model description
Our network model consists of a set of recurrently connected
units (N = 100). The dynamics of each unit in the network
ui(t) is governed by:
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for i = 1, . . . ,N. The activity of each unit, ui(t), is related to
the activation of that unit, xi(t), through a nonlinearity which in
this study we take to be ui(t) = tanh(xi(t)). Each unit receives
input from other units through the recurrent weight matrix W rec

and also receives external input, I(t), that enters the network
through the weight matrix W in. Each unit has two sources
of bias, bi which is learned and ξi(t) which represents noise
intrinsic to the network and is taken to be Gaussian with zero
mean and constant variance. The inputs to the network were
speed and direction. To perform a 2-d navigation task with
the RNN, we linearly combine the firing rates of units in the
network. The two linear readout neurons, y1(t) and y2(t), are
given by the following equation:
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N
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Training
We optimized the network parameters W rec, W in, b and
W out to minimize the squared error between target x- and
y-coordinates from a two dimensional navigation task (per-
formed in rectangular and hexagonal environments) and the
network outputs generated according to equation (2).

†This essay is brief summary of a manuscript which is currently
under review elsewhere.



Parameters were updated with the Hessian-free algo-
rithm (Martens & Sutskever, 2011). In addition to minimizing
the squared error function mentioned above we regularized
the input and output weights. Overall, the training aims to min-
imize a loss function, that consists of the error of the animal,
a metabolic cost, and a penalty for large network parameters.

Results and Conclusions
We run simulation experiments in arenas with different bound-
ary shapes. We find that after training, the network can per-
form localization accurately based on its inputs. To see what
kind of representation the RNN has learned to solve this nav-
igation task, we plot individual neurons’ mean activity level as
a function of the animal’s location during spatial exploration.

Perhaps most interestingly, some of the units in the RNN
exhibit clear grid-like responses (Fig. 1b,c). They typically ex-
hibit multiple firing fields, with each field having a roughly cir-
cular symmetric or ellipse shape. Furthermore, the firing fields
are highly structured, i.e.,, when combined, are arranged on
a regular lattice. Furthermore, the structure of the response
lattice depends on the shape of the boundary. Experimen-
tally, it is shown that rodent (medial) EC contains so-called
grid cells which exhibit multiple firing fields that lie on a reg-
ular grid (Fyhn et al., 2004; Hafting et al., 2005). The grid-
like firing patterns in our simulation are reminiscent of the grid
cells in rodent. Furthermore, some neurons in the RNN ex-
hibit selectivity to the boundary (Fig. 1b,c). Typically, they only
encode a portion of the boundary, e.g. one piece of the wall in
a square shaped environment. Such properties are similar to
the border cell discovered in rodent EC recently (Solstad, Boc-
cara, Kropff, Moser, & Moser, 2008). Interestingly, there are
also neurons in the RNN that exhibit band-like responses (Fig.
1b, c). Experimentally, neurons with periodic-like firing pattern
have been recently reported in rodent EC (Krupic, Burgess,
& O’Keefe, 2012). Most of the remaining units also exhibit
stable spatial responses, but they do not belong to the above
categories. These response profiles can exhibit either one
large irregular firing field; or multiple circular firing fields, but
these firing fields do not show a regular pattern. Experimen-
tally these type of cells have also be observed. In fact, it is
recently reported that the non-grid spatial cells constitute a
large portion of the neurons in Layer II and III of rodent EC
(Diehl, Hon, Leutgeb, & Leutgeb, 2017). The general agree-
ment between the response properties of our model and the
neurophysiology provides strong evidence supporting the hy-
pothesis that neurons in rodent EC form an efficient code for
representing self-location based on the velocity input.
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Figure 1: a Data from previous studies showing different kinds
of neural correlates underlying spatial navigation in rodent EC.
All figures are replotted from previous publications. From left
to right: a “grid cell” recorded when an animal navigates in 2-d
environment, replotted from (Krupic et al., 2012), with the heat
map representing the firing rate of this neuron as a function
of the animal’s location (red corresponds to high firing rate);
a “band-like” cell, from (Krupic et al., 2012); a border cell,
from (Solstad et al., 2008); an irregular spatially tuned cell,
from (Diehl et al., 2017) b,c Model responses. Different types
of spatial selective responses of units in the trained RNN in
square (b) and hexagonal (c) arenas. Example simulation re-
sults for two different environments (square, hexagon) are pre-
sented. Blue (yellow) represents low (high) activity. From top
to bottom: Grid-like responses; Band-like responses; Border-
related responses; Spatially irregular responses.
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