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Abstract

It has been well-established that rodent’s Entorhinal Cor-
tex (EC) contains a rich set of spatial correlates which are
essential for spatial navigation, including grid cells which
encode space using tessellating patterns. Although in-
tensely investigated, the mechanisms and functional sig-
nificance of these spatial representations remain largely
mysterious. As a new way to address these questions, we
trained recurrent neural networks (RNN) to perform navi-
gation tasks in 2-d arenas based on velocity inputs. Sur-
prisingly, we find that grid-like spatial response patterns
emerge in trained networks, along with units that exhibit
other spatial correlates, e.g., border cells and band-like
cells. All these different functional types of neurons have
been observed experimentally. Our results suggest that
grid cells, border cells and others as observed in EC may
be a natural solution for representing space efficiently
given the predominant recurrent connections in the neu-
ral circuits.
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Introduction

Neural circuits often need to maintain an internal representa-
tion of cognitive variables without external stimuli. Here we will
focus on spatial navigation, which typically requires the brain
to maintain a representation of location and update it accord-
ing to the animal’s movement and landmarks of the environ-
ment. Studies in rodent neurophysiology have revealed a rich
set of neural correlates of space in Entorhinal Cortex (EC),
including grid cells (Fyhn, Molden, Witter, Moser, & Moser,
2004; Hafting, Fyhn, Molden, Moser, & Moser, 2005), along
with border cells, band-like cells and others (see Fig. 1a).
The study of the neural underpinning of spatial cognition has
provided an important window into how high-level cognitive
functions are supported by the neural system. How might the
spatial navigation task be solved using a network of neurons?
Recurrent neural networks (RNN) seem to be particularly use-
ful for these tasks. Indeed, recurrent-based continuous at-
tractor networks have been one of the main types of models
proposed for the formation of grid cells, e.g., (McNaughton,
Battaglia, Jensen, Moser, & Moser, 2006) ). However, these
models require fined tuned connectivity patterns, and the evi-
dence of such connectivity patterns has been largely absent.
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Here we present a new approach for understanding the
spatial representation in EC. Specially, we trained a RNN to
perform spatial navigation tasks. We show that training a RNN
with biologically relevant constraints naturally gives rise to a
variety of spatial response profiles as observed in rodent EC,
including grid-like responses. Our result implies that the neu-
ral representation in rodent EC may be seen as a natural way
for the brain to solve the navigation task efficiently. More gen-
erally, it suggests that RNNs can be a powerful tool for under-
standing the neural mechanisms of certain high-level cognitive
functions’.

Model
Model description
Our network model consists of a set of recurrently connected

units (N = 100). The dynamics of each unit in the network
u;(t) is governed by:
dxi(t)
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fori=1,...,N. The activity of each unit, u;(¢), is related to
the activation of that unit, x;(¢), through a nonlinearity which in
this study we take to be u;(¢) = tanh(x;(z)). Each unit receives
input from other units through the recurrent weight matrix W
and also receives external input, I(¢), that enters the network
through the weight matrix Wi, Each unit has two sources
of bias, b; which is learned and &;(¢) which represents noise
intrinsic to the network and is taken to be Gaussian with zero
mean and constant variance. The inputs to the network were
speed and direction. To perform a 2-d navigation task with
the RNN, we linearly combine the firing rates of units in the
network. The two linear readout neurons, y; () and y,(¢), are
given by the following equation:

Z Wout (2)

Training

We optimized the network parameters W™, win b and
WO to minimize the squared error between target x- and
y-coordinates from a two dimensional navigation task (per-
formed in rectangular and hexagonal environments) and the
network outputs generated according to equation (2).
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Parameters were updated with the Hessian-free algo-
rithm (Martens & Sutskever, 2011). In addition to minimizing
the squared error function mentioned above we regularized
the input and output weights. Overall, the training aims to min-
imize a loss function, that consists of the error of the animal,
a metabolic cost, and a penalty for large network parameters.

Results and Conclusions

We run simulation experiments in arenas with different bound-
ary shapes. We find that after training, the network can per-
form localization accurately based on its inputs. To see what
kind of representation the RNN has learned to solve this nav-
igation task, we plot individual neurons’ mean activity level as
a function of the animal’s location during spatial exploration.
Perhaps most interestingly, some of the units in the RNN
exhibit clear grid-like responses (Fig. 1b,c). They typically ex-
hibit multiple firing fields, with each field having a roughly cir-
cular symmetric or ellipse shape. Furthermore, the firing fields
are highly structured, i.e.,, when combined, are arranged on
a regular lattice. Furthermore, the structure of the response
lattice depends on the shape of the boundary. Experimen-
tally, it is shown that rodent (medial) EC contains so-called
grid cells which exhibit multiple firing fields that lie on a reg-
ular grid (Fyhn et al., 2004; Hafting et al., 2005). The grid-
like firing patterns in our simulation are reminiscent of the grid
cells in rodent. Furthermore, some neurons in the RNN ex-
hibit selectivity to the boundary (Fig. 1b,c). Typically, they only
encode a portion of the boundary, e.g. one piece of the wall in
a square shaped environment. Such properties are similar to
the border cell discovered in rodent EC recently (Solstad, Boc-
cara, Kropff, Moser, & Moser, 2008). Interestingly, there are
also neurons in the RNN that exhibit band-like responses (Fig.
1b, c). Experimentally, neurons with periodic-like firing pattern
have been recently reported in rodent EC (Krupic, Burgess,
& O’Keefe, 2012). Most of the remaining units also exhibit
stable spatial responses, but they do not belong to the above
categories. These response profiles can exhibit either one
large irregular firing field; or multiple circular firing fields, but
these firing fields do not show a regular pattern. Experimen-
tally these type of cells have also be observed. In fact, it is
recently reported that the non-grid spatial cells constitute a
large portion of the neurons in Layer Il and Ill of rodent EC
(Diehl, Hon, Leutgeb, & Leutgeb, 2017). The general agree-
ment between the response properties of our model and the
neurophysiology provides strong evidence supporting the hy-
pothesis that neurons in rodent EC form an efficient code for
representing self-location based on the velocity input.
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Figure 1: a Data from previous studies showing different kinds
of neural correlates underlying spatial navigation in rodent EC.
All figures are replotted from previous publications. From left
to right: a “grid cell” recorded when an animal navigates in 2-d
environment, replotted from (Krupic et al., 2012), with the heat
map representing the firing rate of this neuron as a function
of the animal’s location (red corresponds to high firing rate);
a “band-like” cell, from (Krupic et al., 2012); a border cell,
from (Solstad et al., 2008); an irregular spatially tuned cell,
from (Diehl et al., 2017) b,c Model responses. Different types
of spatial selective responses of units in the trained RNN in
square (b) and hexagonal (¢) arenas. Example simulation re-
sults for two different environments (square, hexagon) are pre-
sented. Blue (yellow) represents low (high) activity. From top
to bottom: Grid-like responses; Band-like responses; Border-
related responses; Spatially irregular responses.
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