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Abstract

We describe a framework to infer canonical computations
in distributed neural codes. Our method is based on the
theory that the brain performs approximate inference by
a message-passing algorithm operating on a probabilis-
tic graphical model. We describe an analysis method that
aims to identify this algorithm from neural data elicited
during perceptual inference tasks. It simultaneously finds
interactions between the decoded variables that define
the brain’s internal model of the world, along with global
parameters that define the message-passing algorithm.
The latter parameters are canonical, i.e. common to all
parts of the graphical model regardless of interaction
strength, so they generalize to new graphical models. We
apply this analysis method to simulated neural record-
ings from a simple model brain that performs approx-
imate inference using an advanced mean-field method,
and indeed successfully recover the true inference algo-
rithm. We conclude by discussing improvements needed
to identify more complex message-passing algorithms.

Message-passing in the brain?

In the brain, information about many variables is distributed
across populations of neurons, and this information is recoded
by the nonlinear transformations that the neurons implement.
We hypothesize that these computations perform probabilistic
inference over an internal model the brain has learned. How-
ever, exact inference in probabilistic models is intractable ex-
cept in rare, special cases. Many algorithms for approximate
inference in probabilistic graphical models are based on iter-
atively transmitting information about probability distributions
along the graph of interactions. These algorithms go by the
name of “message-passing” algorithms because the informa-
tion they convey between nodes is described as messages.
They are dynamical systems whose variables represent prop-
erties of a probability distribution.

Examples of message-passing algorithms include be-
lief propagation (Pearl, 2014) and expectation propagation
(Minka, 2001). Each specific algorithm is defined by how in-
coming information is combined and how outgoing informa-
tion is selected, reflecting different choices of local approxima-
tions for intractable global computations. To be a well-defined
message-passing algorithm, these core operations must be
the same, irrespective of what kinds of latent variables are
being inferred, or how strongly they interact in the underlying
probabilistic graphical model.

Here we present an analysis method to reverse-engineer
such a message-passing algorithm from real or synthetic
neural data evoked during perceptual inference tasks. The
method simultaneously finds the interactions between the
decoded variables that define the brain’s internal model of
the world, and the global hyperparameters that define the
message-passing inference algorithm.

We successfully apply this method to a simple inference
algorithm from simulated brain data (see below). This vali-
dates the general approach, and encourages us to scale up
the method to more complex inference algorithms and real
brain data to search for canonical computational structure.

Case study: inferring advanced mean field inference
We analyze data from an inference model that estimates
marginal probabilities over an Ising model of N binary vari-
ables s ∈ {−1,+1}N drawn from the joint distribution p(s) ∝

exp
(

s>Js+h>s
)

, where h and J are a bias vector and cou-

pling matrix respectively. The approximate inference algorithm
we chose, known as the TAP approximation (Thouless, An-
derson, & Palmer, 1977), is an advanced mean field method
that estimates the marginal probabilities of each variable si,
xi ≈ p(si > 0) according to the dynamics

ẋit =−xit +σ

(
∑

j
W [Ji j,xit ,x jt ]x jt +hit

)
(1)

where σ(x) = 1/(1 + e−2x). This can be considered to be
a nonlinear neural network with activations xi and synaptic
weights W . Each effective synaptic weight W [Ji j,xi,x j] de-
pends on the coupling strength Ji j in the underlying graphical
model, but is also modulated by the pre- and post-synaptic
activity x j and xi:

W [Ji j,xi,x j] = Ji j +2J2
i j(1−2xi)(1− x j). (2)

Given a time series xt generated by the algorithm in opera-
tion, we use gradient-descent-based optimization to jointly fit
the nonlinearity and coupling parameters using the assumed
polynomial form

Ŵ [Ji j,xit ,x jt ] = ∑
a,b,c

GabcJa
i jx

b
itx

c
jt (3)

over indices a,b,c. This parameterization includes the true
model as a special case.

We jointly optimized over both the coupling parameters J
and the message-passing parameters G simultaneously by



minimizing the squared error between the true and predicted
time-dependent inference dynamics,

E[G,J|h] = ∑
t,i

(
∑

j
Ŵ [Ji j,xit ,x jt ]−∑

j
W [Ji j,xit ,x jt ]x jt

)2

(4)
where the term ∑ j W [Ji j,xit ,x jt ]x jt is constructed from the
time series xt as:

∑
j

W [Ji j,xit ,x jt ]x jt = σ
−1
(

xit+1− (1−λ)xit

λ

)
−hit (5)

and λ provides low-pass filtering in the discrete-time version
of (1). We also assume that the biases h are fully observed,
as they function as sensory evidence both for the algorithm
and for our estimation of the algorithm. This is a non-convex
optimization, with interesting degeneracies in our parameteri-
zation. One such degeneracy is that we can scale all Ji j glob-
ally by any factor β, and then perfectly compensate by chang-
ing Gabc by β−a. This is equivalent to increasing the interac-
tion energies and inference ‘temperature’ at the same time.
The parameters also allow a constant offset, Ĵ = βJ + γ. The
change in coupling weights is perfectly compensated by Ĝ that
satisfy: Ĝ0bc + γĜ1bc + γ2Ĝ2bc = G0bc, βĜ1bc + 2βγĜ2bc =
G1bc and β2Ĝ2bc = G2bc, when a ∈ {0,1,2}. Figure 1 shows
the simultaneous inference of the coupling weights and global
parameters for an example graphical model, and illustrates
these interesting degeneracies in our parameterization.

We also examine the message-passing algorithm in pop-
ulation codes. Unlike the localist representation discussed
above, in such a distributed code the relevant inferred param-
eters are embedded in the responses of many neurons (Raju
& Pitkow, 2016) (Figure 2). Despite the change in represen-
tation, we find that the information can still be extracted, and
the message-passing identified up to the well-understood de-
generacies.

In conclusion, despite the high dimensional parameters and
complex cost surface, we can successfully infer a family of
algorithms that reproduce the canonical inferential dynamics
of model brains. This is a crucial first step toward a new theory
of computation in the real brain.
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Figure 1: Simultaneous inference of a message-passing al-
gorithm and coupling weights. This example network is a
fully-connected 5-node graph with 15 couplings Ji j. The true
message-passing algorithm can be expressed as a polyno-
mial function with powers up to second order, requiring global
coefficients Gabc for indices a,b,c ∈ {0,1,2}. A: Cost func-
tion. Shown is a two-dimensional slice through the (33 +15)-
dimensional cost function, with the global minimum defined to
be coordinate (0,0) and two local minima defining coordinates
(0,1) and (1,0). B: The two minima determine two sets of
estimated couplings Ĵi j (red and green) that are related to the
true couplings Ji j by affine transformations. C,D: These two
local minima (top and bottom subpanels respectively) provide
close matches (red, green) to the message-passing parame-
ters and couplings of the true model (blue). The deviations
in the learnt message-passing parameters Ĝ in panel C com-
pensate for these affine transformations in Ĵi j.
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Figure 2: Inferential TAP dynamics (A) embedded in simulated
population data (B). The algorithm’s estimated marginals x̂t
can be extracted from the neural data rt and used to identify
the message-passing algorithm (Figure 1).


