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Abstract
Curvilinear receiver operating characteristic (ROC)
curves are a classic signature of recognition memory
in humans and animals. They have been traditionally
explained in terms of two competing models that lead to
different interpretations of recognition as either unitary
or resulting through the combination of two independent
processes. Neither model class specify neural mecha-
nisms or account for all salient aspects of the behavioral
data. Here we propose an alternative computational
account of recognition memory that can reconcile these
seemingly incompatible views. In our model, recognition
arises due to two interacting subsystems, optimised for
efficient recollection. We show that our model yields a
hybrid pattern of recognition memory behavior, which
combines aspects of both traditional models. Addi-
tionally, it provides a functional interpretation of these
features rooted in the physiological properties of the
neural circuits supporting memory recall.
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Introduction
Introspection provides strong intuitions that recognition can
come about either due to recollection (‘here comes my old
school buddy’) or due to a vague sense of familiarity, without
any recollective detail (‘I’m sure I’ve met this person before,
but I have no idea when and why’). However, it is hotly de-
bated whether or not distinct processes underlie recognition,
and what this implies about true and false familiarity judge-
ments, as routinely measured by receiver operating character-
istic (ROC) curves (Yonelinas, 2002; Wixted & Squire, 2011).

Dual module (DM) theories posit that recollection and famil-
iarity are independent, with the former an all-or-none process
and the latter well described by traditional signal detection the-
ory. In contrast, single module (SM) theories assume that
recognition relies on a single graded decision variable, with
higher variance for familiar compared to novel items. This
variable could arise unitarily, or by combining familiarity and
recollection cues. DM is supported by the fact that certain ex-
perimental manipulations preferentially affect one of the two
components, e.g. localized hippocampal lesions disrupt recol-
lection but leave familiarity relatively unaffected (Fortin et al.,
2004), something that SM cannot explain. However, quanti-
tative model comparison favors SM in all but few experiments
(with linear ROCs) (Wixted & Squire, 2011). Despite over 30
years of recognition memory research, no consensus exists

about which class of models provides a more satisfying ac-
count for the data. Notably, neither model has been instanti-
ated at the circuit level.

Here we resolve this impasse by considering a ubiquitous
property of memory traces, namely that their strength is not
uniform (e.g. due to recency, fluctuations in attention, depth
of processing), which puts fundamental constraints on mem-
ory recall. We develop a neural circuit architecture that can
efficiently operate in the face of trace strength-ambiguity, and
show that it naturally combines features of both SM and DM
models, thus providing a unified account for a broad range of
behavioral and neural observations.

Methods and results
We cast competing theories within the framework of Bayesian
decision theory with the decision variable reflecting the log
posterior odds ` = log P(y=1|D)

P(y=0|D) that a test item is familiar
(y = 1) or novel (y = 0) given an internal representation D.
ROCs, plotting the rate of hits against the rate of false alarms,
are traced by varying the relative cost of misses and false
alarms, which is equivalent to varying a threshold on ` (Dayan
& Abbott, 2001). This is in contrast to classical signal detec-
tion theory-based accounts, which would operate by placing a
threshold directly on D, which is neither optimal, nor flexible
enough to accommodate a non-scalar D – a point to which we
return below. By reformulating traditional SM and DM models
within this framework, we show that they imply different distri-
butions over `, P(`|y = 0) and P(`|y = 1) (Fig. A, top), which
give rise to the kind of ROCs classically attributed to these
models: curvilinear ROCs (that are asymmetric such that high
hit rates are possible even for near-zero false alarm rates) for
both models, with linear z-ROC for SM and u-shaped z-ROC
for DM (where a z-ROC is obtained by transforming both axes
of a ROC via the inverse normal c.d.f.; Fig. A, bottom).

Critically, the Bayesian framework also allows us to con-
sider non-scalar internal representations D, which in turn
opens the way to studying the neural underpinnings of recog-
nition memory. Specifically, we consider memory items repre-
sented as patterns of neural activity x, encoded (stored) in the
synapses W of a neural circuit via synaptic plasticity (see gen-
erative model in Fig. B, top left). Novel and familiar items differ
in memory strength s: novel items have s≈ 0, while s can vary
across familiar items (see above). Recognition then becomes
a hierarchical inference process mapping the noisy cues x̃,
and the information stored in synapses W, into a posterior
over the binary y (familiar / novel). The optimal neural circuit
implementation of this inference proceeds by first inferring the



original item, x, and its corresponding strength, s and then
computing the posterior log odds ratio, `. We found that even
if only recollection performance is considered, the first step
is most efficiently implemented by having two functionally dis-
tinct subregions for familiarity and recollection which interact
recursively to compute the joint posterior P(x,s|D) (Fig. B, top
right), rather than an alternative monolithic architecture which
only consists of a recollection module, implicitly marginalising
out the unknown memory strength to obtain P(x|D) (Fig. B,
bottom left). In the optimal dual system, memory strength
influences pattern completion because it modulates the reli-
ability of synaptic information and thus the relative weighting
of the two sources of information x̃ and W. Conversely, the
denoised pattern is used to better estimate s, which provides
evidence for whether or not an item is familiar or novel (Fig. B,
bottom right).

For a wide range of model parameters, the neural circuit de-
rived ROCs are curvilinear, with linear z-ROCs (Fig. C, red),
similar to SM. The patterns of modulation of the ROC can
be traced back to properties of optimal inference in our gen-
erative model. The novel item distribution always has neg-
ative mean and low variance. In contrast, the mean (≥ 0)
and variance of the summary statistic ` increases with mem-
ory strength, resulting in a broader ` distribution for familiar
items. P(`|y = 1) becomes bimodal when P(s|y = 1) has a
heavy tail (Fig. C, blue), similar to DM. In summary, the neural
model recapitulates the phenomenology of recognition mem-
ory behavior, mechanistically resembling either SM or DM de-
pending on the details of the behavioral paradigm. The model
also reproduces changes in ROCs due to lesions (Fig. D), and
other puzzling behavioral (e.g. the increase in false recogni-
tion after perirhinal lesions; (McTighe et al., 2010), not shown
here), and neural observations (e.g. the bi-directional anatom-
ical connectivity between hippocampus and perirhinal cortex,
and heterogeneity in the tuning of perirhinal neurons).

Conclusions
We have shown that a neural circuit implementation of efficient
recollection accounts for a rich set of experimental data on
recognition memory, reconciling seemingly conflicting, well-
entrenched recognition memory models. The critical step is
asking why have two systems in the first place: in the face of
(unavoidable) trace strength variability two functionally sepa-
rate but interacting modules are critical for efficient recollec-
tion.
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Figure 1: A. Bayesian reinterpretation of SM and DM: distribu-
tion of summary statistic ` for targets (red) and lures (blue) and
corresponding (z-)ROCs. B. Top left: Generative model for
recognition memory (top left). Right: optimal neural circuit ar-
chitecture (top): bi-directionally connected familiarity (2-layer
feedforward network, s encoded in second layer) and recollec-
tion modules (similar to autoassociative memory network in
(Savin et al., 2014)); dynamics sample from the joint posterior
P(x,s|D)) by alternating between sampling from P(x|s,D))
and P(s|x,D)) (bottom), with ` determined from s samples
(marginalizing x). Bottom left: recollection performance for the
optimal and a monolithic architecture. C. Same as A, with dif-
ferent assumptions for P(s|y = 1). D. Neural circuit (z-)ROCs
after different lesions.
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