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Abstract
A common approach to extracting information from sim-
ulated spiking neural networks is to train readouts on a
spike-rate variable obtained through convolution of out-
put spike-trains with a filter. Here we argue that best prac-
tice is to use neurons as spike filters. We describe how
neural circuits consist of stock and flow variables that co-
determine each other and argue that membrane poten-
tials provide access to the information contained in the
circuit in a more natural and unbiased way than filtered
spike-trains. We compare the two different approaches to
readout calibration in a classification task.
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Spiking neural network models
Spiking neural networks (SNN) are used to simulate brain
dynamics at the level of single cells. A SNN includes re-
duced models of neurons and synapses, and connectivity
structure. For instance, a linear leaky integrate-and-fire neu-
ron describes how the membrane potential integrates synap-
tic currents and models spiking by resets at a threshold. More
detailed models add additional dynamic variables, resulting
in more complex and realistic dynamics. Synaptic models
translate spike input into post-synaptic currents and can be
absorbed into the neuron model equations. Connectivity de-
termines where neuronal axons terminate. A general SNN
model of N neurons is a coupled system of dynamic variables:

d~xi

dt
= ~f (~xi)+G(~xi) ~Inpi(t), (1)

~Inp(t) = W~S(t), Si = ∑
{t f

i }

δ(t− t f
i ).

Neuron i is described by state vector~xi, which contains the so-
matic membrane potential. Additionally, it may contain input
conductances, adaptive currents, moving thresholds, mem-
brane potentials of dendritic compartments, etc. (Gerstner,
Kistler, Naud, & Paninski, 2014). When the potential of neu-
ron i reaches a (dynamic) threshold it is reset and a spike is
recorded at time t f

i . The spike train vector ~S keeps track of all
spikes in the network and the connectivity matrix W distributes
spike-trains over pre-synaptic sites. The vector ~Inpi denotes
the spike input to the synapses of neuron i. The function ~f de-
scribes the autonomous dynamics of the system and matrix G
describes how it is forced by spike input in a state-dependent
manner. External input can be provided, e.g., by bias currents,
background noise, or spiking activity on some input channels.

Decoding
Input-driven networks generate time-series of spike-trains and
state-variables. Since the neural code used by various brain
systems is not known, these time-series are analyzed to track
information processing and memory. One approach is to train
a linear classifier, or readout, on some set of dynamic vari-
ables in the network (Maass, Natschläger, & Markram, 2002).
It is common to calibrate the readout on spike-trains which are
discrete events in continuous time (point processes). Since
methods for analyzing continuous signals are better devel-
oped, spike-trains are transformed into continuous variables
such as the instantaneous rate of neurons. Generally a spike
filter takes the form:

h(t) =
∫ t

−∞

k(t,s)S(s)ds, (2)

where k is a convolution kernel. Often, the kernel is an expo-
nential decay exp(−(t− t f )/τ) with time-constant τ. Depend-
ing on τ, filtered signals can look similar to the spike-train or a
local estimate of the spike-rate. Typically, τ is chosen to match
the decay of post-synaptic currents (PSC), to have the signal
correspond to a biologically available signal. In the remain-
der of this abstract we argue that readouts can and should be
adapted directly on the membrane potential instead. The two
approaches are illustrated in Figure 1.
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Figure 1: Input-driven, recurrent SNN. Decoding on filtered
spike-trains versus decoding on membrane potentials.

Choice of kernel
Properties of filtered spike-trains depend on the choice of the
filter kernel. This is problematic if SNNs are used to study
cognitive functions as performance might depend on kernel
characteristics more than on network dynamics. To illustrate
this, consider a SNN that is driven by a random sequence of
symbols (50ms each) and the task of the readout is to recall
the previous symbol. An exponential kernel with τ = 200ms
preserves transients of spiking from the previous input. Even



though there might be no trace of this information left in the
network, the readout can succeed at the task. For τ = 20ms
(i.e., the filter mimics PSCs), on the other hand, the readout
might fail. In this case, the filtered spike train may not contain
a trace of the previous input, but this information might still be
available in network state-variables with longer time-scales.
Again, we are unable to asses the network’s capabilities.

Stock-flow duality
Network dynamics can be characterized in terms of stock-
and flow-variables (S and F, respectively). Stock-variables
describe the state of the network nodes, while flow-variables
describe the quantities that are transferred between nodes. In
a SNN, spike-trains are flow-variables and neuronal state-vec-
tors are stock-variables. According to equation (1), neuronal
input evolves the state-variables in time. If all input spike-trains
F are known, we can determine all state-variables S. Con-
versely, the state-variable responsible for generating spikes
is the membrane potential. If the membrane potential time-
series are known, we can reconstruct the spike-trains. Thus, S
and F -variables co-determine each other, the are duals. They
do not hold the same information at each point in time, but a
full time-series of either S or F describes the entire system.
Therefore, readout calibration on S or F is, in principle, equiv-
alent. The choice of readout variable should aim to minimize
artifacts and biases associated with each method.

Decoding on state-variables
The arbitrariness of choosing a filter for spike-trains can be
problematic (see example above). Reading out from mem-
brane potentials, Vm, instead, ensures a continuous signal and
no free parameters have to be chosen. When the readout suc-
ceeds at the recall task, we know that relevant information was
available in the network at the time of decoding. Should it fail,
the information could still be located in other state-variables
such as, e.g., synaptic conductances or adaptive currents.
When these variables are coupled to the somatic membrane
potential, they can ‘write’ stored information into it. Thus, Vm
often provides a good, unbiased estimate of the information
present in the SNN.

Neurons as spike filtering kernels
In large-scale brain networks, readouts are implemented as
neural circuits (Rigotti et al., 2013) and information from the
functional SNN needs to be transmitted to these readouts. If
relevant information is available in S, but not in F, how could
a downstream network have access to it? A readout neu-
ron transforms input spikes into PSCs that integrate with lo-
cal state-variables to determine the membrane potential at the
soma. The filter kernel that best captures this transformation
is the coupled equation for the neuronal-state dynamics itself!
In contrast, choosing PSC-like time-scales in the spike filter is
insufficient since in conductance-based models PSCs depend
on the neuron state as well. Hence, the most natural filter for
a spike-train is a neuron, and this justifies readout adaptation
directly on membrane potentials.

Experimental results
We illustrate the difference between the two decoding meth-
ods in a simple identity mapping task. Different input symbols,
each represented by a unique set of excitatory spike-trains,
were forcing a SNN of 10,000 neurons. The readout was
adapted on a sub-sample of either membrane potentials Vm,
or exponentially filtered spike-trains h with τ= 20ms. The task
was to produce a vector representation identifying the input
symbol. The number of distinct symbols Nu varied between 1
and 500. Figure 2 shows the squared error between readout
and binary target vectors. Error was substantially lower for the
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Figure 2: Left: Squared error against number of input symbols
when reading out from membrane potentials (blue) or filtered
spike-trains (red). Right: Effective dimensionality λeff of the
two signals.

Vm-readout and scaled linearly in Nu. Thus, the Vm-readout
was better able to distinguish symbolic representations within
the SNN. Effective dimensionality λeff = 1/∑

M
j=1 λ2

j , where
λ j are normalized PCA eigenvalues, measures how well the
available SNN state-space is used for encoding. For both
readouts, λeff was largely insensitive to Nu. However, Vm pro-
vided a higher-dimensional signal than h, and is thus capable
of carrying more information.

Conclusion
We have argued that the natural way to interpret a spike sig-
nal is to filter it through a neuron. Across time, neuronal state-
variables carry the same information as spike-trains. Adapt-
ing a readout directly on neuronal state-variables, such as the
membrane potential, avoids arbitrary choice of a filter kernel.
This makes a state-variable readout less biased and poten-
tially improves SNN performance in modeling cognitive tasks.
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