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Abstract
Deep neural network models (DNNs) reach human-like
performance in the computationally complex task of vi-
sual categorization, and also exhibit representational
similarities with the human visual system. DNNs there-
fore enable researchers to investigate the mechanisms
underlying cortical selectivity and organization by alter-
ing the training setup of the deep networks. Here, we ex-
plore whether using an ecologically more relevant set of
image categories, rather than the ImageNet set frequently
used in the engineering literature, may lead to receptive
field properties that more closely match the human vi-
sual system. To this end, we introduce a new training
set that consists of the 578 most concrete and frequent
basic-level categories in the English language. Train-
ing 8-layer convolutional neural networks (CNNs) on this
eco-set and a similar sized engineering set revealed that
the ecologically more relevant visual diet led to signifi-
cantly improved similarities to response properties in hu-
man inferior temporal cortex (IT). Although engineering
datasets are a rich, and easily accessible source of train-
ing data, matching the human and networks’ input statis-
tics promises to lead to a better understanding of cortical
function.
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Computer vision challenges and ecological
validity

Deep neural networks (DNNs) have recently revolutionized
computer vision and now regularly dominate several areas
of artificial intelligence. Due to task performance and origi-
nal biological motivation, computational neuroscientists have
started investigating in how far DNNs can be used as model
for information processing in the brain. Although DNNs largely
abstract away from biological detail, they are nevertheless
the currently best available models of the human visual cor-
tex (Kietzmann, McClure, & Kriegeskorte, 2017; Kriegeskorte,
2015; Yamins & DiCarlo, 2016; Marblestone, Wayne, & Kord-
ing, 2016). Despite these early, yet promising results, how-
ever, it should be noted that the most commonly tested DNNs

were trained to excel at a particular computer vision task,
known as the ImageNet Challenge (ILSVRC 2012), rather
than to explain and predict cortical function. Central to the
challenge is the task to recognize 1,000 categories, for in-
stance including 119 different breeds of dogs. From an en-
gineering standpoint, this is highly sensible, as it allows com-
puter vision systems to demonstrate their ability to perform
even fine-grained visual classification.

In contrast to this, computational neuroscience uses DNNs
as a probe to understand cortical function. DNNs can be al-
tered based on their architectures, learning algorithms, ob-
jective functions, or input statistics, and changes in the pre-
dictive performance on neural datasets thereby allow for in-
sights into computational mechanisms in the brain (Kietzmann
et al., 2017). Here, we focus on the latter and investigate
whether DNNs trained on ecologically more relevant cate-
gories can better explain representations of complex visual
objects in human inferior temporal cortex (IT). Central to this
work is the introduction of a new training set, which was de-
signed to more closely match the human visual diet. First,
categories were selected to be ”concrete” rather than abstract
(Brysbaert, Warriner, & Kuperman, 2014). Second, we fo-
cused on the most common categories by using linguistic oc-
currence statistics. The resulting list was then used as basis
to distill a set of basic-level categories. The dataset comprises
CC-SA-licensed images gathered from Bing (2%), Flickr (3%)
and ImageNet (95%). Only including categories with at least
750 images (and selecting maximally 1,000 images per cat-
egory) resulted in a total number of 569,413 images across
578 categories: the eco-set. To allow for a fair comparison
to the previously used training sets, we randomly chose 578
categories from the ILSVRC 2012 and matched the number
of images per category to the eco-set.

Based on these two sets, we then trained two architec-
turally identical deep convolutional neural networks (CNNs)
and used representational similarity analysis to compare their
internal representations to the human IT.

Materials and methods
To test the effects of different visual diets on the network’s
ability to match human cortical representational geometries,



we used a CNN, reminiscent of VGG-S (Chatfield, Simonyan,
Vedaldi, & Zisserman, 2014). To reduce the overall number of
parameters, we replaced the last fully-connected layers with
convolutional layers of 1024 dimensions, and decreased the
input image size from 224x224 to 128x128 pixels. The result-
ing network (VGG 8) contains seven convolutional layers and
one linear read-out and has approximately 20 million parame-
ters. We used a stride and zero-padding of 1 and a kernel size
of 3 throughout the CNN, and varied the amount of maps per
layer in the following way: 64-128-256-512-512-1024-1024.
For regularization purposes gaussian presynaptic noise was
used on all layers during training (McClure & Kriegeskorte,
2016).

Cortical responses in human IT were approximated using
fMRI BOLD data recorded while 15 participants viewed 92
images of visual objects across two sessions each (Cichy,
Khosla, Pantazis, Torralba, & Oliva, 2016; Kriegeskorte, Mur,
& Bandettini, 2008). We then used representational similarity
analysis (Nili et al., 2014) to compare the cortical representa-
tional geometries to the CNNs trained on either the trimmed
ILSVRC set, or the novel eco-set. For this, we computed rep-
resentational dissimilarity matrices (RDMs) for human IT, as
well as each layer of the two networks, and used a Kendall
tau-a correlation to compare the agreement between human
and network RDMs.

Figure 1: Classification performance of VGG 8: eco-set (blue) and
the ILSVRC (black) during training (dashed) and testing (solid).

Figure 2: VGG 8 trained on eco-set (blue) explains significantly
more variance in human IT than the same architecture trained on
a trimmed ILSVRC (black). Statistical comparison based on a two-
sided Wilcoxon signed-rank test, FDR corrected.

Results and conclusion
After training (Figure 1), the CNNs were tested for their ability
to predict representational geometries of visual objects in hu-

man IT. The network trained on the new set of ecologically
more relevant categories showed significant improvements
over the trimmed ILSVRC. This was true for all but the very
first layer (Figure 2). Importantly, this improvement cannot be
attributed to higher training accuracy, as VGG 8 trained on the
eco-set achieved a lower accuracy than the same architecture
trained on the trimmed version of ILSVRC 2012.

Here we have shown that training DNNs based on eco-
logically more relevant categories can improve the represen-
tational similarities between artificial network and human IT.
Task performance was lower for the network trained on the
eco-set, suggesting that the visual diet, rather than increased
task performance explains these improvements. Network
training followed the standard training regime used in the Im-
ageNet challenge, in which the probability of occurrence is
approximately constant across categories. As a next step, we
plan to investigate whether non-uniform probability distribu-
tions, matching real-world category frequencies, or category
importance, can lead to further improvements in predicting hu-
man neural responses.
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