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Abstract
Selective attention is thought to facilitate reinforcement learn-
ing (RL) in multidimensional environments by constraining
learning to dimensions relevant for the task at hand. But how
would agents know what dimensions to attend to in the first
place? Here we use computational modeling of human atten-
tion data to show that selective attention is sensitive to trial-
by-trial dynamics of reinforcement. Participants performed a
decision-making task with multi-dimensional stimuli, while un-
dergoing functional magnetic resonance imaging (fMRI) and
eye-tracking. At any one time, only one of three stimulus di-
mensions was relevant to predicting probabilistic binary re-
ward. Participants had to learn which was the predictive di-
mension, and what feature within that dimension was the most
rewarding. In previous work we showed that attention to dif-
ferent dimensions modulates learning in this task. To examine
how subjects learn what to attend to, here we developed and
compared different models that specify how attention changes
trial-by-trial. Attention data were best explained by an RL
model that tracks feature values learned through trial-and-
error, and allocates dimensional attention in proportion to the
highest-valued feature along each dimension. This model out-
performed models that determined attention based on choice
history alone, suggesting that attention dynamically changes
as a function of recent reward history.
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Introduction
Any RL algorithm requires maintaining and updating the value
of a possible set of stimuli or environment configurations (for-
mally, states of the task). The time required to learn a so-
lution to the task, and the quality of the learned solution,
both depend on choosing an appropriate state representa-
tion (Wilson, Takahashi, Schoenbaum, & Niv, 2014). For in-
stance, when learning to pick avocados, it is more important
to consider color and firmness rather than shape or smell.
This raises a fundamental question: in a world where fea-
tures are abundant, how do agents choose which to focus on
and learn about? One possibility is to employ selective atten-
tion to narrow down the dimensionality of the task (Niv et al.,
2015; Wilson & Niv, 2011; Cañas & Jones, 2010; Jones &

Cañas, 2010). Previous work has shown that selective atten-
tion to task-relevant dimensions influences human trial-and-
error learning, significantly reducing the computational cost of
learning in multidimensional settings (Niv et al., 2015; Rad-
ulescu, Daniel, & Niv, 2016; Leong, Radulescu, Daniel, De-
Woskin, & Niv, 2017). However, what dimensions are relevant
to any particular task is not always known a priori, and might
itself be learned through experience. We propose that a bidi-
rectional interaction exists between attention and learning in
high-dimensional environments (Dayan, Kakade, & Montague,
2000; Leong et al., 2017), and here we provide evidence for
one direction of this interaction: human selective attention
dynamically changes as a function of recent reward history.
To test this hypothesis, we had human participants perform
a reinforcement learning (RL) and decision-making task with
compound stimuli, each comprised of a face, a house and a
tool, while undergoing functional magnetic resonance imag-
ing (fMRI) scans. Using eye-tracking and multivariate pat-
tern analysis (MVPA) of fMRI data (Norman, Polyn, Detre, &
Haxby, 2006), we obtained a quantitative measure of partici-
pants’ attention to different stimulus dimensions on each trial.
To study how attention was modulated by outcomes of on-
going learning, we built computational models of trial-by-trial
changes in the focus of attention (Daw, 2011).

Participants and methods

On each trial, participants (N=25) chose between three
columns, each comprised of a face, a house and a tool. Mim-
icking real world learning problems where only a subset of
dimensions in the environment is relevant for the task at hand,
at any one time, only one of three stimulus dimensions (faces,
houses or tools) was relevant to predicting probabilistic bi-
nary reward. Participants had to learn, through trial and error,
which was the predictive dimension, and what feature within
that dimension was the most rewarding. We obtained two trial-
by-trial measures of participants’ attention to each dimension.
First, we computed the proportion of time participants spent
looking at each dimension on a given trial. Second, using
MVPA methods we quantified face-, house- and tool-selective
neural activity on each trial. Each measure provided a nu-
meric vector of three ”attention weights” that sum to 1, de-
noting the attention towards each of the three dimensions on



that trial. Our goal was to build a model that can predict trial-
by-trial fluctuations in attention weights from past choices and
rewards, where each model embodies a different hypothesis
about which decision variables determine changes in atten-
tion.

The family of models considered
All models that we tested assume that the participant main-
tains and updates weights w associated with each of the nine
features (e.g. Einstein, Big Ben, etc). On every trial, the
weights of chosen features wchosen are adjusted towards a tar-
get that differs from model to model, using an error-correcting
learning rule with learning rate η as a free parameter. The
weights of unchosen features w¬chosen are decayed towards 0
with decay rate ηk as a free parameter. The predicted atten-
tion weights φd are then determined by passing the maximal
feature weights in each dimension through a softmax function
with gain g as a free parameter.

Recent choice history

The recent choice history model adjusts weights of chosen
features towards 1, therefore keeping track of which features
were consistently chosen in the past trials:

wchosen,t+1 = wchosen,t +η∗ (1−wchosen,t)

w¬chosen,t+1 = (1−ηk)∗ (w¬chosen,t)

This model, also known as a ”choice kernel”, formalizes the
hypothesis that attention follows choices, and that choices far-
ther in the past contribute less to what people will attend to in
the future.

Recent reward history

The recent reward history model is identical to the recent
choice history model above, except in that it only adjusts the
weights and performs the decay when the participant receives
a reward:

wchosen,t+1 = wchosen,t +η∗ (1−wchosen,t)∗Rt

w¬chosen,t+1 = (1−ηk ∗Rt)∗ (w¬chosen,t)

This model formalizes the hypothesis that attention is dy-
namically modulated by recent rewards: the more consistently
reward is obtained when choosing a feature in a particular di-
mension, the more attention will be directed towards that di-
mension.

Value

Finally, in the value model, attention tracks the within-
dimension maximum of feature values, as learned through re-
inforcement learning with decay. This model maintains value
weights for each of the features, initializing them at 0 and up-
dating them on each trial as follows: the value of the cho-
sen stimulus is assumed to be the sum of the values of all its

features; a prediction error is calculated as the difference be-
tween the obtained reward and the value of the chosen stim-
ulus; the values of each of the chosen features are then up-
dated based on the prediction error (with the learning rate be-
ing a free parameter), and the value of unchosen features are
decayed towards 0 (with the decay rate being a free parame-
ter).

wchosen,t+1 = wchosen,t +η∗ (Rt −
3

∑
d=1

wchosen,t,d)

w¬chosen,t+1 = (1−ηk)∗ (w¬chosen,t)

This model therefore formalizes the hypothesis that atten-
tion follows value as learned using a simple reinforcement
learning algorithm (Niv et al., 2015).

Model fitting and comparison
We fit the free parameters of each model for each participant
separately by minimizing the distance between trial-by-trial
predicted and measured attention vectors, and used leave-
one-game-out cross-validation to determine the mean dis-
tance per trial on held-out data for each model. We used the
root mean squared deviation (RMSD) as a distance metric.
And we compared the fits to those of a zero-parameter base-
line model that assumes that attention is always uniform.

Results and discussion
We tested whether attention allocation data could be better ex-
plained by recent choice history (i.e., attention was enhanced
for features that have been previously chosen), recent reward
history (i.e., attention was allocated to features that have been
previously rewarded), or learned value (i.e., attention was
enhanced for features associated with higher value over the
course of a game). If reward history dynamically determines
attention allocation in our task, we would expect the two mod-
els that include reward information to explain our data better
than a model that only tracks which features the participant
chose. Cross-validated model comparison revealed that at-
tention data were best explained by a model that tracked fea-
ture values. The value model outperformed the recent reward
history model for the eye-tracking measure (paired-sample t-
test, t(24) = 2.77, p < .05, best fit for 17/25 subjects). For the
independent MVPA measure, the value model did not signifi-
cantly improve upon the predictions of the recent reward his-
tory model (paired-sample t-test, t(24) = 1.02, p = 0.31, best
fit for 16/25 subjects). However, this model still performed sig-
nificantly better than the recent choice history model (paired-
sample t-test, t(24) = 3.83, p < 0.001). Our results suggest
that reward history, whether counted directly or through esti-
mation of values via reinforcement learning, determined atten-
tion allocation.
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Cañas, F., & Jones, M. (2010). Attention and reinforcement

learning: constructing representations from indirect feed-



back. In Proceedings of the 32nd annual conference of the
cognitive science society.

Daw, N. D. (2011). Trial-by-trial data analysis using com-
putational models. Decision making, affect, and learning:
Attention and performance XXIII, 23, 1.

Dayan, P., Kakade, S., & Montague, P. R. (2000). Learn-
ing and selective attention. Nature Neuroscience, 3, 1218–
1223.

Gershman, S. J., Cohen, J. D., & Niv, Y. (2010). Learning to
selectively attend. In 32nd annual conference of the cogni-
tive science society.
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