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Abstract
Current evidence suggests that the brain uses multi-
ple systems for instrumental control; these systems are
known as model-based and model-free. The former pre-
dicts action-outcomes using an internal model of the
agent’s environment, while the latter learns to repeat pre-
viously rewarded actions. This paper proposes a neu-
ral architecture comprised of both model-free and model-
based reinforcement learning systems, and tests this
model’s ability to perform target-reaching with a sim-
ulated biarticulate robotic arm. Target-reaching condi-
tions included (A) both static and dynamic target prop-
erties, (B) slowly changing robotic arm kinematics, and
(C) absence of visual inputs. The proposed model rapidly
learns an internal model of environmental dynamics,
shows target-reaching performance superior to an ex-
isting state of the art model, and successfully performs
target-reaching without visual input.
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Introduction
Current evidence posits the existence of multiple behavioural
control systems in the brain (Daw & O’Doherty, 2013). One
of these, the model-based system, employs an internal rep-
resentation of the world and its body (Kawato et al., 2003),
which is advantageous for multiple reasons. These include (A)
endowment of the agent with information for decision-making
when sensory inputs are lacking, and (B) predicting the future
states of the world given the agent’s actions (Kawato et al.,
2003; Wolpert, Miall, & Kawato, 1998). These benefits are ex-
emplified during arm-reaching in the absence of visual input.

We have previously shown (using dynamic neural fields)
that adaptive internal representations of environmental dy-
namics could provide reliable information for target-reaching
during occluded vision (Fard, Hollensen, Heinke, & Trappen-
berg, 2015). As such, in the present study we expand the
deep deterministic policy gradient (DDPG) method (Lillicrap
et al., 2015) by combining it with a capacity to learn internal
models of environmental dynamics during control of a simu-
lated robotic-arm. The result is an architecture that can learn
an internal model to predict and plan movements. We com-
pared our model’s ability to perform target-reaching (using a
simulated two-joint arm) with that of DDPG.

Proposed model

Figure 1 illustrates our proposed model. Input to the actor
includes (1) the current location of the robot arm joints, and
(2) the current target location. Actor output is a (continuous)
change in shoulder (α) and elbow (β) joint angle. Given these
actions and the present state, the forward model predicts the
next location of the arm. The forward model is trained using
the Euclidean distance between actual and predicted arm po-
sitions at the next time step. The reward function defined as
the negative Euclidean distance between the hand and target.
The integrator component integrates predicted future location
with the real future location (visual information). The output of
the integrator component updates the critic through TD-error
component. To train the actor, the ∇ component provides a
gradient derived from either the forward model or the critic;
here, precedence is given to the forward model error signal,
which if unavailable is substituted by the critic-derived error
signal.

Experiments and Results

We tested our model on a target reaching task. We examined
our model compared to the DDPG under 4 different circum-
stances (static/changing kinematics and static/changing tar-
get locations). Changing kinematics are modeled by increas-
ing the length of arm segments by 0.001 cm in every step after
episode 100. The changing target is modeled by (randomly)
relocating the target in every episode. The initial arm lengths
were set to 8 cm and 5 cm for distal and proximal compo-
nents, respectively. To facilitate statistical comparisons, we
ran 20 experimental comparisons of our model with DDPG:
each experiment runs for 1000 episodes, with a maximum of
30 time-steps per episode. Episodes were terminated upon
target reaching—defined as a distance of less than 0.5 cm
between the robot ”hand” and the target—or lapse of 30 time
steps (whichever occurred first). Performance was quantified
as the proportion of episodes in which the target was success-
fully reached, and this was compared between models using a
two-sample z-test for proportions. Table 1 shows these results
under 4 different conditions, averaged over 20 different runs.
Figure 2 shows performance during reaching of a changing
target with changing arm kinematics (averaged over 20 runs).
These data show statistically significant performance improve-
ment with the proposed model.



An important contribution of the actor-critic with internal
models (our proposed architecture) is the ability to reach the
target despite occluded vision. Conversely, DDPG and other
model-free solutions are dependent on visual input. After 900
episodes of training, we tested the ability of our model to reach
20 sequentially presented targets. After presenting the target
location at the initial time-step, no further visual feedback was
available. The first outcome measure was the hand-to-target
distance calculated once the blinded arm stopped at the lo-
cation it predicted to be sufficiently close to the target (see
Table 2). Second, successful target reaching was defined as
a distance less than 5mm between the robot hand and target.
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Figure 1: The proposed model architecture. The locations
of arm (xend ,xelbow) and the target (xtarget ) define the current
state. Actions α and β represent joint angle changes. The
Integrator integrates the predicted (x′end ,x′elbow) and proprio-
ceptive (xpend ,xpelbow) signals, and ∇ uses the error signal to
train the actor.

Table 1: Comparison of average performance between our
proposed model and DDPG during 1000 episodes over 20
runs.

Target/Kinematics DDPG (SD) Ours (SD) P-value
Static/Static 94.5 (2.5) 95.7 (7.6) 0.6
Static/Changing 87.5 (12.0) 96.4 (4.1) 0.02
Changing/Static 50.7 (15.9) 83.0 (2.4) < 0.001
Changing/Changing 46.4 (10.7) 83.3 (2.6) < 0.001

Discussion
Learning an internal representation of the environment is im-
portant for flexible decision making in complex environments
with noisy (or absent) sensory inputs. Our data show that
combination of such a model with actor-critic (model-free)
control enables learning of flexible decision-making policies.
In the face of changing reward contingencies (e.g. variable tar-
get positions), this is akin to expression of goal-directed con-
trol. Moreover, the proposed architecture demonstrates that
behavioral control guided by an internal model of the world
can account for adaptive behaviour in the absence of contin-
ual sensory feedback. Further work must better elucidate the
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Figure 2: Percentage of successful reach over episodes for
DDPG and the proposed model.

Table 2: Performance of the proposed model with occluded
vision during 10 sequential target-reaching episodes after 900
episodes of training. Reached denotes number of successful
reaches. Steps denotes the average number of time steps
until the model terminated reaching movement. This test was
thrice repeated and and p-values computed by binomial test.

Target/Kinematics Reached Steps (SD) P-value
Static/Static 20 1.01 (0.12) < 0.001
Static/Changing 20 1.65 (0.5) < 0.001
Changing/Static 19 2.06 (2.4) < 0.001
Changing/Changing 16 2.73 (4.06) < 0.001

mechanisms of arbitration between model-based and model-
free control systems, and incorporate Pavlovian-instrumental
interactions.
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