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Abstract: 

When humans view others’ movements, large swathes of the 

visual cortex are activated (Kilner, 2011), but the major 

representational divisions organizing this neural activity are 

not well understood. To explore this architecture, 13 observers 

underwent functional neuroimaging while observing 120 2.5s 

videos depicting everyday actions. Using voxel-wise modeling 

(Mitchell et al., 2008), we found that a variety of encoding 

models—with features for the body parts involved in the 

actions, what the actions were directed at (e.g., object, person, 

space), and the visual image features present—all successfully 

predicted visual cortex responses to individual actions (leave-

2-out accuracies: 43-79%). Prediction accuracy for these 

models varied across the cortex, revealing divisions of ventral 

and dorsal streams with different underlying action 

representations. We also used data-driven clustering to 

discover natural parcellations in visual cortex based on voxels’ 

response profiles (Lashkari et al., 2010), providing a 

convergent approach to the dataset. These analyses reveal 

several meaningful functional divisions within the regions 

involved in action perception, including two networks linking 

ventral and dorsal stream representations, and begin to 

formalize the neural representational structure underlying our 

visual understanding of everyday actions. 
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Introduction 

Humans can recognize the meaning behind a diverse set of 

actions – from eating and hammering to dancing and 

cooking – as well as parse the crucial difference between a 

person running for exercise and one running from a bear. 

What features does the visual system use to process others’ 

actions, and how is this feature-processing organized across 

the visual cortex? 

These questions have gone largely unanswered, in part 

because most research on neural action representations has 

studied a small subset of human visual experience (hand- 

and tool-based actions). The current study leverages 

functional neuroimaging (fMRI), a rich video stimulus set, 

and a variety of analytic approaches to gain better traction 

on these questions.  

Materials and Methods 

Stimuli 

120 short (2.5s) video clips were used to depict 60 everyday 

activities, sampled from the American Time Use Survey. 

Videos were resized to a 512x512px frame and presented at 

30 frames per second using MATLAB. 

Feature Dimensions  

To collect ratings for each activity video along several 

hypothesized organizing dimensions, Amazon Mechanical 

Turk workers provided the following ratings for the action 

depicted in each video: the body parts involved, the target of 

the action (e.g., directed at an object or a person), and the 

amount of effort required. In addition, to collect low-level 

image features, each video frame was passed through a gist 

model (Oliva & Torralba, 2001), which calculates the 

spatial distributions of low-level image statistics.  

fMRI Procedure  

13 human observers completed an event-related fMRI 

experiment. During the main task, participants watched the 

activity videos and detected an occasional red frame to 

maintain attention. Each video appeared four times across 

eight functional runs. 

Results 

Neural Encoding Modeling 

Analysis Voxel-wise encoding models were used to model 

each voxel’s responses to individual videos based on each of 

the feature spaces listed above. Model fits were cross-

validated using a leave-two-out procedure: each voxel’s 

response pattern was fit using data from 118 videos, then 

predicted and actual responses to the two held-out videos 

were correlated to yield a single r-value for each voxel. 

Only voxels with a split-half reliability ≥0.3 were included 

in the analysis. 

Results A considerable portion of the occipital, temporal, 

and parietal cortices was moderately well fit by all models 

(Figure 1). Several patterns were evident in the data. First, 
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the model based on low-level features (gist) out-performed 

the three higher-level models in early visual cortex, while 

the higher-level models outperformed the gist model in the 

temporal and parietal cortices.  Second, some models 

showed complementary patterns within their cross-

validation performance: specifically, the effort model 

succeeds almost exclusively in the lateral occipito-temporal 

cortex, an area where the target model predicted poorly. 

These results suggest that actions are represented with 

different underlying feature spaces across different sub-

regions of the visual cortex. 

 

Response Profile Clustering  

Analysis To discover functional divisions within the visual 

cortex in a data-driven manner, we used a response profile 

clustering method (e.g., Lashkari, Vul, Kanwisher & 

Golland, 2010). In this analysis, K-means clustering was 

used to group voxels based on their overall response to the 

set of videos.  

 

Results Figure 2 shows the response profile clustering 

solution with k=7 clusters.  We found two networks of 

regions (dark blue and purple), in the parietal and lateral 

temporal cortices with response profiles related to activities’ 

tool-relevance (consistent with a known “tool network”; 

Johnson-Frey, 2004). Additional networks parcellate early 

visual and temporal areas, and may relate to other activity 

features, such as scene-relevance (dark pink). This solution 

remained stable when the data were split into two sets, and 

supports the existence of several meaningful functional 

networks across the ventral and dorsal streams that are 

involved in activity perception. 

 

Conclusions 

Through a novel use of encoding models, we have shown 

that it is possible to model neural responses to actions using 

both low-level image statistics and high-level features such 

as body part involvement, action target, and effort. Further, 

the predictive ability of these feature spaces varies across 

the cortex: low-level image features are prominent in early 

visual areas; but, as information is passed forward to the 

parietal and temporal cortices, higher-level features have 

more explanatory value. Finally, we found evidence for 

several functional networks that respond differently to the 

action videos and that connect regions across ventral and 

dorsal streams.  These findings take significant steps toward 

understanding action perception in the brain.   

 

 

 

 

 

 

Figures 

 

Figure 1: Voxel-wise leave-2-out cross-validation results 

for all models. The correlation between predicted and actual 

neural response to the held-out videos is plotted in each 

voxel on an example subject’s left hemisphere. 

 

Figure 2: Response Profile Clustering results with seven 

clusters, shown on both hemispheres of an example 

subject’s brain. 
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