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Abstract: 
Cognitive neuroscience must evaluate the information content 
and representational complexity of each brain signal: does it 
covary with physical attributes of sensory inputs (e.g. contrast, 
orientation), or with more elaborate attributes such as an 
object’s category? Comparing response patterns between brain 
regions and/or recording modalities (e.g. MEG, fMRI) is a 
useful approach, but somewhat limited by the complexity of 
brain dynamics (e.g. “low-level” brain regions initially respond 
according to physical attributes, but are later affected by object 
category). Here, we followed recent studies that used feed-
forward deep neural networks (DNNs) as a yardstick for the 
representational content of brain signals. We analyzed MEG 
oscillations, recorded while human subjects viewed images 
from different object categories. The multivariate response 
pattern for phase and amplitude signals in each oscillatory 
band (theta, alpha, beta, gamma) was compared with each layer 
of two standard DNNs (GoogLeNet, VGG) presented with the 
same object images. Overall, these large-scale oscillatory brain 
signals tended to coincide better with higher DNN processing 
layers; this was most evident for phase compared to amplitude, 
and for lower frequencies (<13Hz, theta and alpha). In contrast, 
high-frequency (~40Hz, beta and gamma) amplitude was the 
only oscillatory signal that best matched lower DNN layers.  
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Introduction 
Brain oscillations are thought to play an important functional 
role in sensory perception and cognition. However, in 
relating computational mechanisms to oscillatory brain 
signals (from intracranial electrophysiological recordings or 
from scalp-level sensors such as EEG or MEG), a clear 
limitation is that the time or place at which signals are 
recorded does not directly indicate the nature of information 
encoded. Certain brain regions encode both low-level 
properties (e.g. contrast, orientation) and higher-level 
attributes of visual inputs (e.g. object category) at different 
times, while certain high-level regions can display response 
latencies as short as those observed in low-level regions. One 
strategy to overcome these obstacles is to rely on deep neural 
networks (DNNs) as an “objective” hierarchy of visual 
processing levels (Guclu & van Gerven, 2015; Cichy et al., 
2016). These networks can perform object recognition with 
human-level accuracy, and display a selectivity to features of 
increasing complexity (from oriented edges to real object 

classes) not unlike that observed in neurophysiological 
experiments. However, because of their feed-forward 
architecture, the hierarchical rank of each DNN layer can be 
directly and unambiguously mapped onto a corresponding 
rank in representational feature complexity. Here, we applied 
a similar comparison strategy to help characterize the 
functional role of brain oscillations in various standard 
frequency bands: theta (4-8Hz), alpha (8-13Hz), low beta 
(13-20Hz), high beta (20-32Hz), low gamma (32-50Hz) and 
high-gamma (50-100Hz). We separately considered the 
information conveyed by oscillatory phase and amplitude. 

Methods 
MEG: Fifteen subjects were tested with MEG while they 
viewed 92 different objects presented at the center of the 
screen for 0.5s (Cichy, Pantazis & Oliva, 2014). Wavelet 
time-frequency (TF) decomposition for each trial and MEG 
sensor was performed at frequencies between 3-100Hz and 
from -0.6 to +0.7s relative to stimulus onset. MEG 
representational dissimilarity matrices (RDMs; Kriegeskorte, 
Mur & Bandettini, 2008) were computed separately for 
oscillatory amplitude and phase at each TF coordinate. 
Amplitude RDMs reflect how distinct the amplitude 
distribution across MEG channels is for each pair of stimuli. 
Phase RDMs represent to what extent each image in a pair is 
associated with its own distinct phase pattern. 

DNNs: The GoogLeNet (Szegedy et al, 2015) and VGG 
(Simonyan & Zisserman, 2014) networks (Tensorflow 
implementations for Python) were presented with the same 
92 images as the human subjects, and activation maps for 
each layer were extracted in order to compute RDMs. To 
make the networks comparable, we discarded the fully 
connected layers from the VGG network, and limited our 
analysis to the first 12 convolutional layers of both networks. 

Representational Similarity Analysis (RSA): Next we 
computed a representational similarity analysis (RSA; 
Kriegeskorte et al, 2008) between each subject’s MEG RDMs 
and the RDM for each layer of the DNNs. This RSA analysis 
results in a correlation value (r) for each DNN layer at each 
TF point. For each subject and within each oscillatory 
frequency band we extracted the maximum r value over the 
stimulus presentation period. Finally, for each subject and 
frequency band, we computed the regression slope of the 



maximum r values across layers. That is, we do not consider 
absolute similarity between MEG data and each DNN layer, 
but rather how this similarity evolves across DNN layers. 

Results and Conclusions 
Results are summarized in Figure 1. Overall, the vast 
majority of MEG oscillatory brain signals displayed positive 
RSA slopes, i.e. their representational value matched the 
higher DNN layers better than the lower ones. The slopes 
were higher for oscillatory phase than amplitude, and were 
inversely related to oscillatory frequency. The highest 
representational value was found for the phase of theta-band 
oscillations (4-8Hz, see inset in Figure 1B). In contrast, only 
oscillatory amplitude signals in the high-beta and low-
gamma bands (20-50Hz) showed negative RSA slopes (inset 
in Figure 1A), meaning that their representational content 
better matched the lower DNN layers.  

MEG oscillations are global, complex time-varying signals 
that can be difficult to apprehend in a computational sense. 
Here, we showed that DNNs can serve as a yardstick to 
facilitate this endeavor. We highlighted beta-gamma 
amplitude and theta phase as two extremes of a continuum of 
representational value. Future work could examine the 
temporal dynamics of representational similarity between 
brain oscillations and DNNs.  
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Figure 1. Quantifying representational content by comparing DNN layers and MEG oscillatory amplitude (A) or phase (B). 
Representational dissimilarity matrices (RDMs) were computed for each DNN layer and each oscillatory signal for each subject 
(N=15) at each time point during stimulus presentation. Correlating the MEG and DNN RDMs yielded a measure of 
representational similarity (r); we selected the maximum r value across time points. The insets show two examples of 
representational similarity data for high-beta amplitude/VGG (left), and for theta phase/GoogLeNet (right). The shaded regions 
represent s.e.m. across subjects. The slope of the representational similarity curves is the final measure used to quantify 
representational content (bar graphs: error bars represent s.e.m., * symbols denote a slope significantly different from zero, 
one-sample t-test, p<0.05). High slopes indicate a representation that preferentially encodes object features and category, while 
lower or even negative slopes suggest a representation that emphasizes physical attributes (e.g. contrast, orientation). 
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