Technical Program

TA4b: Theory of Deep Learning (Invited)

Session Type: Oral
Time: Tuesday, November 5, 10:15 - 11:55
Location: Heather
Session Chairs: Richard Baraniuk, Rice University and Santiago Segarra, Rice University
 
TA4b-1: A SPLINE THEORY OF DEEP NETWORKS
         Randall Balestriero; Rice University
         Richard Baraniuk; Rice University
 
TA4b-2: INFORMATION IN THE WEIGHTS AND EMERGENT PROPERTIES OF TRAINING DEEP NEURAL NETWORKS
         Alessandro Achille; University of California, Los Angeles
         Stefano Soatto; University of California, Los Angeles
 
TA4b-3: UNDERSTANDING GENERALIZATION IN NEURAL NETS VIA VISUALIZATION
         W Huang; University of Maryland
         Zeyad Emam; University of Maryland
         Micah Goldblum; University of Maryland
         Liam Fowl; University of Maryland
         Justin Terry; University of Maryland
         Tom Goldstein; University of Maryland
 
TA4b-4: ON EXACT COMPUTATION WITH AN INFINITELY WIDE NEURAL NET
         Sanjeev Arora; Princeton University
         Simon S. Du; Carnegie Mellon University
         Wei Hu; Princeton University
         Zhiyuan Li; Princeton University
         Ruslan Salakhutdinov; Carnegie Mellon University
         Ruosong Wang; Carnegie Mellon University
 
TA4b-5: DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET?
         Benjamin Recht; University of California, Berkeley
         Rebecca Roelofs; University of California, Berkeley
         Ludwig Schmidt; University of California, Berkeley
         Vaishaal Shankar; University of California, Berkeley