WA4b: Information-theoretic Approaches to Machine Learning (Invited) |
Session Type: Oral |
Time: Wednesday, October 31, 10:15 - 11:30 |
Location: Heather |
Session Chair: Matthew Nokleby, Wayne State University |
WA4b-1: UNDERSTANDING GENERATIVE ADVERSARIAL NETWORKS VIA A DISTANCE METRIC |
Kaiyi Ji; Ohio State University |
Yi Zhou; Ohio State University |
Yingbin Liang; Ohio State University |
WA4b-2: OPTIMAL TRAINING CHANNEL STATISTICS FOR NEURAL-BASED DECODERS |
Meryem Benammar; ISAE Supaero |
Pablo Piantanida; CentraleSupélec and MILA unviversité de Montréal |
WA4b-3: DISTRIBUTED VARIATIONAL INFERENCE -- AN INFORMATION THEORETIC VIEW |
Iñaki Estella Aguerri; Huawei Technologies |
Abdellatif Zaidi; Huawei Technologies and Université Paris-Est |
WA4b-4: GENERATIVE ADVERSARIAL PRIVACY: A DATA-DRIVEN APPROACH TO INFORMATION-THEORETIC PRIVACY |
Chong Huang; Arizona State University |
Peter Kairouz; Stanford University |
Lalitha Sankar; Arizona State University |